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Abstract

This study uses hidden Markov models (HMM) to forecast conflict in the former Yugoslavia for

the period January 1991 through January 1999.  The political and military events reported in the

lead sentences of Reuters news service stories were coded into the World Events Interaction Survey

(WEIS) event data scheme.  The forecasting scheme involved randomly selecting eight 100-event

"templates" taken at a 1-, 3- or 6-month forecasting lag for high-conflict and low-conflict weeks.  A

separate HMM is developed for the high-conflict-week sequences and the low-conflict-week

sequences.  Forecasting is done by determining whether a sequence of observed events fit the high-

conflict or low-conflict model with higher probability.  

Models were selected to maximize the difference between correct and incorrect predictions,

evaluated by week.  Three weighting schemes were used: unweighted (U), penalize false positives

(P) and penalize false negatives (N).  There is a relatively high level of convergence in the

estimates—the best and worst models of a given type vary in accuracy by only about 15% to 20%.

 In full-sample tests, the U and P models produce at overall accuracy of around 80%.  However,

these models correctly forecast only about 25% of the high-conflict weeks, although about 60% of

the cases where a high-conflict week has been forecast turn out to have high conflict.   In contrast,

the N model has an overall accuracy of only about 50% in full-sample tests, but it correctly

forecasts high-conflict weeks with 85% accuracy in the 3- and 6-month horizon and 92% accuracy

in the 1-month horizon.  However, this is achieved by excessive predictions of high-conflict weeks:

only about 30% of the cases where a high-conflict week has been forecast are high-conflict.

Models that use templates from only the previous year usually do about as well as models based on

the entire sample.

The models are remarkably insensitive to the length of the forecasting horizon—the drop-off in

accuracy at longer forecasting horizons is very small, typically around 2%-4%.  There is also no

clear difference in the estimated coefficients for the 1-month and 6-month models.  An extensive

analysis was done of the coefficient estimates in the full-sample model to determine what the model

was "looking at" in order to make predictions.  While a number of statistically significant

differences exist between the high and low conflict models, these do not fall into any neat patterns.

This is probably due to a combination of the large number of parameters being estimated, the

multiple local maxima in the estimation surface, and the complications introduced by the presence

of a number of very low probability event categories.  Some experiments with simplified models

indicate that it is possible to use models with substantially fewer parameters without markedly

decreasing the accuracy of the predictions; in fact predictions of the high conflict periods actually

increase in accuracy quite substantially.
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The Sequence Recognition Approach to Political

Forecasting

Event sequences are a key element in human reasoning about international events.  Human

analysts "understand" an international situation when they recognize sequences of political activity

corresponding to those observed in the past.  Empirical and anecdotal evidence point to the

likelihood that humans have available in long-term associative memory a set of "templates" for

common sequences of actions that can occur in the international system (and in social situations

generally).  When part of a sequence is matched, the analyst predicts that the remainder of the

sequence will be carried out ceteris paribus, though often the analyst will make a prediction for the

express purpose of insuring that the remainder of the sequence is not carried out.  Sequences can

be successfully matched by human analysts in the presence of noise and incomplete information,

and can also be used to infer events that are not directly observed but which are necessary

prerequisites for events that have been observed.

The use of analogy or "precedent-based reasoning" has been advocated as a key cognitive

mechanism in the analysis of international politics by Alker (1987), Mefford (1985, 1991) and

others, and is substantially different from the statistical, dynamic and rational choice paradigms that

characterize most contemporary quantitative models of international behavior.  Khong (1992) and

Vertzberger (1990) review the general arguments in the cognitive psychology literature on use of

analogy in political reasoning; May (1973) and Neustadt and May (1986) discuss it from a more

pragmatic and policy-oriented perspective.  As Khong observes:

Simply stated, ... analogies are cognitive devices that "help" policymakers perform six

diagnostic tasks central to political decision-making.  Analogies (1) help define the nature of

the situation confronting the policymaker; (2) help assess the stakes, and (3) provide

prescriptions.  They help evaluate alternative options by (4) predicting their chances of success,

(5) evaluating their moral rightness and (6) warning about the dangers associated with options.

(pg. 10)

The ubiquity of analogical reasoning is supported by a plethora of experimental studies in

cognitive psychology in addition to the case studies from the foreign policy literature.

Analogical reasoning is an easy task for the human brain, one that is substantially easier than

sequential or deductive reasoning.   Most experimental evidence suggests that human memory is

organized so that when one item is recalled, this naturally activates links to other items that have

features in common, and these are more likely to be recalled as well (Anderson 1983; Kohonen

1984).
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Because analogies are so prevalent in human political reasoning, it would be helpful to have

some computational method for systematically assessing the similarity of two sequences of

political events.  In Schrodt (1991), I posed this problem in the following manner:

In human pattern recognition, we have a general idea of what a category of event sequences

look like—the archetypal war, the archetypal coup, and so forth.  In a sense, ideal sequences

are the centroid of a cluster of sequences, but that centroid is a sequence rather than a point.  If

a method could be found for constructing such a sequence, the cluster of behaviors could be

represented by the single ideal sequence, which would substantially reduce computing time and

provide some theoretical insights as to the distinguishing characteristics of a cluster. (pg. 186)

The problem of generalizing sequences is particularly salient to the analysis of international

political behavior in the late 20th century because many contemporary situations do not have exact

historical analogs.  Yet human analysts are clearly capable of making analogies based on some

characteristics of those behaviors.  For example, because of its unusual historical circumstances,

Zaire in 1997 had a number of unique characteristics, but nonetheless analysts pieced together

sufficient similarities between Zaire and a variety of earlier crises in Africa and elsewhere to come

to the correct conclusion that Zaire had entered a period of rapid political change.  The key to this

was the ability to use general analogies: if one insisted on matching all of the features of a

case—which a human analyst would almost never do, but a computer might—then the Zairian

situation would be nearly impossible to classify using analogies.

Techniques for comparing two sequences of discrete events—nominal-level variables occurring

over time—are poorly developed compared to the huge literature involving the study of interval-

level time series.  Nonetheless, several methods are available, and the problem has received

considerable attention in the past three decades because it is important in the problems of studying

genetic sequences in DNA, and computer applications in involving human speech recognition.

Both of these problems have potentially large economic payoffs, which tends to correlate with the

expenditure of research efforts.  Until fairly recently, one of the most common techniques was the

Levenshtein metric (see Kruskal 1983; Sankoff & Kruskall 1983); Schrodt (1991) uses this in a

study of the BCOW crises.  Other non-linear methods such as neural networks, genetic

algorithms, and locating common subsets within the sequences (Bennett & Schrodt 1987; Schrodt

1990) have also been used.

Hidden Markov models

Over the past decade the hidden Markov model (HMM) has emerged as one of the most

widely used techniques for the classification of noisy sequences into a set of discrete categories
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(or, equivalently, computing the probability that a given sequence was generated by a known

general model).sequence comparison method.  While the most common applications of HMMs

are found in speech recognition and comparing protein sequences, a recent search of the World

Wide Web found applications in fields as divergent as modeling the control of cellular phone

networks, computer recognition of American Sign Language and—inevitably—the timing of

trading in financial markets.  The purpose of this project is to apply this technique to the problem

of forecasting conflict in the former Yugoslavia.

A sequence is "noisy" when it contains missing, erroneous and extraneous elements, and

consequently the sequence cannot be classified by simply matching it to a set of known "correct"

sequences.  A spelling program, for example, would always mark "wan" as an incorrect spelling of

"one" because written English usually allows one and only one correct spelling of a word.  Spoken

English, in contrast, allows a wide variation of pronunciations, and in some regional dialects, "wan" is

the most common pronunciation of "one".  A computer program attempting to decipher spoken

English needs to provide for a variety of different ways that a word might be pronounced, whereas a

spelling checker needs only to know one.

An HMM is a variation on the well-known Markov chain model, one of the most widely

studied stochastic models of discrete events (Bartholomew 1975).  The standard reference on

HMMs is Rabiner (1989), which contains a thorough discussion of the estimation techniques used

with the models as well as setting forth a standard notation that is used in virtually all

contemporary articles on the subject.   Like a conventional Markov chain, a HMM consists of a set

of n discrete states and an n x n matrix [A] = {aij} of transition probabilities for going between

those states.  In addition, however, every state has a vector of observed symbol probabilities that

combine into a second matrix [B] = {bj(k)} corresponding to the probability that the system will

produce a symbol of type k when it is in state j.  The states of the HMM cannot be directly

observed and can only be inferred from the observed symbols, hence the adjective "hidden".  This

is in contrast to most applications of Markov models in international politics where the states

correspond directly to observable behaviors (see Schrodt 1985 for a review)

While HMMs can have any type of transition matrix, the model that I will focus on in this

chapter is called a "left-right model" because it imposes the constraint that the system can only

remain in its current state or move to the next state.  The transition matrix is therefore of the form







a11 1-a11 0 ... 0

0  a22 1-a22 ... 0
0  0 a33 ... 0
... ...
0 0 0 ... 1-an-1,n-1
0 0 0 ... 1
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and the individual elements of the model look like those in Figure 1.  This model is widely used in

speech recognition because parts of a word may be spoken slowly or quickly but in normal speech

the ordering of those parts is never modified.

Figure 1. An element of a left-right-left hidden Markov model

01

a i,i

i,i+1a

b (1) b (m)
i i

b (0)i

m00

i,i-1a

Recurrence
 probability

Transition 
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Symbol 
probability
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State
    i

A series of these individual elements form an HMM such as the 5-state model illustrated in Figure

2.  This illustrates a “left-right-left” model, where a process can make a transition to the previous

state, the next state, or remain in the same state.1

In empirical applications, the transition matrix and symbol probabilities of an HMM are

estimated using an iterative technique called the Baum-Welch algorithm.  This procedure takes a

set of observed sequences (for example the word "seven" as pronounced by twenty different

speakers, or a set of dyadic interactions from the BCOW crisis set) and finds coefficients for the

matrices [A] and [B] that locally maximize the probability of observing those sequences.  The

Baum-Welch algorithm is a nonlinear numerical technique and Rabiner (1989:265) notes "the

algorithm leads to a local maxima only and, in most problems of interest, the optimization surface

is very complex and has many local maxima."

                                                

1 This is a generalization of the “left-right” model commonly used in speech recognition, where transitions are only
allowed to the next state.  In a left-right model, the final state of the chain is an "absorbing state" that has no
exit probability and recurs with a probability of 1.
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Figure 2. A left-right-left (LRL) hidden Markov Model

A B C D E F

Because the Baum-Welch algorithm is an expectation-maximization method, it should, in

theory, be possible to use the standard tools of maximum likelihood methods to compute

asymptotic estimates of the standard errors of the estimates of the parameters in the [A] and [B]

matrices, as well as comparing different models using likelihood ratios.  In practice, however, this

does not seem to be done, at least in the literature I've surveyed.  The reason for this seems to be

related to the local solutions provided by the Baum-Welch algorithm.  As illustrated in the

experiments below, the variance of the parameter estimates found in these local solutions is very

large, although a variety of differing parameters appear to yield roughly similar estimates for the

joint probability of the sequences.

After a set of models has been estimated, that set can be used to classify an unknown sequence

by computing the maximum probability that each of the models generated the observed sequence.

This is done using an algorithm that requires on the order of N2T calculations, where N is the

number of states in the model and T is the length of the sequence.  Once the probability of the

sequence matching each of the models is known, the model with the highest probability is chosen as

that which best represents the sequence.  Matching a sequence of symbols such as those found in

daily data on a six-month crisis coded with using the 22-category World Events Interaction Survey

scheme (WEIS; McClelland 1976), generates probabilities on the order of 10-(T+1):  Assume that

each state has ten associated WEIS categories that are equally probable: bi(k)=0.10.  Leaving aside

the transition probabilities, each additional symbol will reduce the probability of the complete

sequence by a factor of 10-1.  The transition probabilities, and the fact that the WEIS codes are not

equiprobable, further reduce this probability.  These sequence probabilities are consequently

extremely small, even if the sequence was in fact generated by one of the models, but the only

important comparison is the relative fit of the various models.  The measure of fit usually reported is

the log of the probability; this statistic is labeled α (alpha).

(An insurmountable disadvantage of this computation is that one cannot meaningfully compare

the fit of two sequences to a single HMM unless the sequences are equal in length.  In other words,
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it is possible to compare a sequence to a series of models, but one cannot compare several arbitrary

sequences to a single model.)

For example, in a typical speech-recognition application such as the recognition of bank

account numbers, a system would have HMMs for the numerals "zero" through "nine".  When a

speaker pronounces a single digit, the system converts this into a set of discrete sound categories

(typically based on frequency), then computes the probability of that sequence being generated by

each of the ten HMMs corresponding to the ten digits.  The HMM that has the highest

probability—for example the HMM corresponding to the numeral "three"—gives the best estimate

of the number that was spoken.

The application of the HMM to the problem of generalizing the characteristics of international

event sequences is straightforward.  The symbol set consists of the event codes taken from an

event data set such as WEIS.  The states of the model are unobserved, but have a close theoretical

analog in the concept of crisis "phase" that has been explicitly coded in data sets such as the

Butterworth international dispute resolution data set (Butterworth 1976), CASCON (Bloomfield &

Moulton 1989, 1997) and SHERFACS (Sherman & Neack 1993), and in work on preventive

diplomacy such as Lund (1996).  For example, Lund (1996:38-39) outlines a series of crisis

phases ranging from "durable peace" to "war" and emphasizes the importance of an "unstable

peace" phase.  In the HMM, these different phases would be distinguished by different

distributions of observed WEIS events found in the estimated bj vectors.  A "stable peace" would

have a preponderance of cooperative events in the WEIS 01-10 range; the escalation phase of the

crisis would be characterized by events in the 11-17 range (accusations, protests, denials, and

threats), and a phase of active hostilities would show events in the 18-22 range.  The length of time

that a crisis spends in a particular phase would be proportional to the magnitude of the recurrence

probability aii.

The HMM has several advantages over alternative models for sequence comparison.  First, if

N<<M, the structure of the model is relatively simple.  For example a left-right model with N states

and M symbols has 2(N-1) + N*M parameters compared to the M(M+2) parameters of a

Levenshtein metric.  HMMs can be estimated very quickly, in contrast to neural networks and

genetic algorithms.  While the resulting matrices are only a local solution—there is no guarantee

that a matrix computed by the Baum-Welch algorithm from a different random starting point might

be quite different—local maximization is also true of most other techniques for analyzing

sequences.  Furthermore, the computational efficiency of the Baum-Welch algorithm allows

estimates to be made from a number of different starting points.  The HMM model, being

stochastic rather than deterministic, is specifically designed to deal with noisy input and with

indeterminate time; both of these are present in international event sequences.
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HMMs are trained by example—model that characterizes a set of sequences can be

constructed without reference to the underlying rules used to code those sequences.  This provides

a close parallel to the method by which human analysts generalize sequences:  They typically learn

general characteristics from a set of archetypal cases.

HMMs do not require the use of  interval-level scales such as those proposed by Azar and

Sloan (1975) or Goldstein (1992).  These scales, while of considerable utility, assign weights to

individual events in isolation and make no distinction, for example, between an accusation that

follows a violent event and an accusation during a meeting. The HMM, in contrast, uses only the

original, disaggregated events and models the context of events by using different symbol

observation probabilities in different states.  An event that has a low probability within a particular

context (that is, a specific hidden state) lowers the overall probability of the model generating the

sequence.  In aggregative scaling methods, events have the same weight in all contexts.

While most existing work with event data aggregates by months or even years, the HMM

requires no temporal aggregation.  This is particularly important for early warning problems, where

critical periods in the development of a crisis may occur over a week or even a day.  The HMM is

relatively insensitive to the delineation of the start of a sequence.  It is simple to prefix an HMM

with an initial "background" state that reflects the distribution of events generated by a particular

source (e.g. Reuters/WEIS) when no crisis is occurring.  A model can simply cycle in this state

until something important happens and the chain moves into the later states characteristic of crisis

behavior.

There is a clear interpretation to each of the parameters of the [A] and [B] matrices, which

allows them to be interpreted substantively; this contrasts with techniques such as neural networks

that have a very diffuse parameter structure.  More generally, the fit of the model has a familiar

probabilistic interpretation.  Finally—and not insignificantly—the HMM technique has already

been developed and is an active research topic in a number of different fields.  The breadth of those

applications indicates that the method is relatively robust.  While there is always a danger in

applying the technique du jour to whatever data on political behavior happen to be laying around,

the HMM appears unusually well suited to the problems of generalizing and classifying

international event data sequences.

Data and Forecasting Model

Data

The event data used in this study were machine-coded using the 2-digit (22 category) WEIS

system from the lead sentences in Reuters stories obtained from the NEXIS data service for the

period January 1991 through May 1997 and the Reuters Business Briefing service for June 1997
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through January 1999. These reports were coded using the Kansas Event Data System (KEDS)

automated event data coding program (Gerner et al. 1994; Schrodt, Davis & Weddle 1994).

The KEDS coder does some simple linguistic parsing of the news reports—for instance, it

identifies the political actors, recognizes compound nouns and compound verb phrases, and

determines the references of pronouns—and then employs a large set of verb patterns to determine

the appropriate event code.  Only the lead sentences were coded and a sentence was not coded if it

contained six or more verbs or no actor was found prior to the verb (sentences meeting these

criteria have a greater-than-average likelihood of being incorrectly coded by KEDS). Schrodt &

Gerner (1994), Huxtable & Pevehouse (1996) and Bond et al. (1996) discuss extensively the

reliability and validity of event data generated using Reuters and KEDS.  A 00 nonevent was added

for each day in which no events were recorded in either direction in the dyad.  Multiple events

occurring in the same day are kept in the sequence.  While the JWAC coding dictionaries sub-

divide the various geographical-ethnic groups in the Balkans—for example separately coding

Bosnian Serbs—these actors were combined into four primary ethnic groups—Serbs, Croats,

Bosnians, and Kosovars—for the purpose of the analysis.

Because Reuters was intensely covering this region during most of the period analyzed, only

lead sentences were coded.  The KEDS program is capable of coding full stories and has been

tested in that capacity (see Schrodt and Gerner 1998), but we have found that full-story coding

gives additional information only when marginal actors are involved, or when an area receives only

sporatic coverage (for example West Africa; see Huxtable 1997).  Neither condition applies to the

Balkans: significant events in the conflict almost inevitably received coverage in separate stories

(i.e. in lead sentences), and in many cases, a single event would generate multiple stories.

Full-story coding would primarily serve to insert a large number of high-frequency verbal

events ("comment" and "consult") into the sequences, and because the HMM models use

templates that contain a fixed number of events (this is necessitated by the HMM approach), the

effect of full-story coding would be to reduce the amount of information in any given sequence.2

By using lead-sentence coding, we insure that the sequences contain the most important events

(subject, as always, to the judgements of Reuters' reporters and editors.)

                                                

2 That is, reduce the amount of information from the perspective of information theory: because the "comment"
category in WEIS is very frequent, it carries less information than an event that occurs with low probability.
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Forecasting Model

The accuracy of the model is accessed on whether it can predict when violence will occur,

violence being defined as events coded into the WEIS "22" category.  Given the diverse character

of conflict in this region over the time period—violence having occurred between Serbs and Croats,

Serbs and Bosnians, Serbs and Kosovars, but also occasionally between other groups (e.g. Croats

and Bosnians)— I did not attempt to differentiate who was involved in the violence.

The forecast target was whether a week contained more or less than twenty (20) WEIS

category 22 ("use of force") events.  The threshold of 20 events is somewhat arbitrary, but that

threshold seemed to be reasonable for differentiating periods when the Balkans were relatively

quiet from those where there was substantial violence.  Approximately 20% of the weeks in the

data set satisfy the "high conflict" criterion.

Figure 3. Prediction Scheme

Time

Start of 
target
 week

7 daysForecasting lag
(28, 91 or 184 days)

100-event
predictive 
sequence

Measurement
of WEIS 22

events

End of
sequence

Three forecast periods were used

28 days approximately 1 month

91 days approximately 3 months

184 days approximately 6 months

The early warning sequence for each week consisted of the 100 events prior to the first day of

the  week minus the forecast period;3   Figure 3 provides a schematic of this model.

                                                

3 Why 100?—because I have ten fingers...  The length of the warning sequence is a free parameter—SEQ_SIZE in
the program—and other values might work better, depending on the application.  In previous work on the
Middle East, I have done some experiments with sequences of 50 and 200 events; the results were roughly
comparable to the results from 100 event sequences.  Given the vagaries of timing in this region—for example
the unpredictable and seasonally variable effects of weather on military operations, as well as the large number of
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The HMMs were estimated using 16 "forecasting templates," eight for the high-conflict weeks

and eight for the low-conflict weeks.   A high-conflict template was created from the data by

choosing a high-conflict week at random, then getting a 100-event sequence with the appropriate

forecasting lag; low-conflict templates are created in a similar manner.  Finally, prediction for a

particular week is done by computing the fit of a 100-event sequence, obtained with a suitable lag

prior to the beginning of the week, and then assigning the "high conflict" or "low conflict" prediction

depending on which one of the two models had a higher probability of generating the sequence.

In this preliminary analysis, the templates have been chosen at random from any week in the

data set, so while the computed forecast is strictly predictive (i.e. the prediction technique uses no

information beyond that available at the beginning of the week minus FORECAST days), the

estimation of the predictive model is not, because the model can use templates that occurred after

the time of the forecast.  (This approach was used because I anticipated that some periods of time

would provide higher-quality templates than others, though this turned out not to be the case so far

as I can determine).  Nonetheless, only a very small amount of the data4—approximately 4%—is

being used to characterize the complete sequences, so the model is certainly not tautological.  It is

straightforward to switch the estimation is a purely predictive mode; this will be done for the final

analysis in this project once the various elements of the model have been finalized.  Two additional

estimation schemes that are purely predictive—they estimate the model on a set of data that occurs

before the period where the accuracy is assessed—are also estimated; they will be discussed

below.

The forecasting model used the following eight relationships

Serbia -> any target Croatia -> any target

any source -> Serbia any source -> Croatia

Bosnia -> any target Kosovo -> any target

any source -> Bosnia any source -> Kosovo

Following the approach in Schrodt (2000), the multiple interactions were modeled by incrementing

the WEIS code for the Nth dyad by (N-1)*22, so for example the {any source -> Serbia} events

have codes 23 through 44 (corresponding to the original WEIS codes 01 to 22) the {Croatia ->

any target} events have codes 89 through 110, and so forth.  If no event occurred with either dyad,

                                                                                                                                                           
diplomatic interventions during the course of the conflict—it is unlikely that the model will be very sensitive to
the length of the sequence.

4 1600 events in the templates out of about 42,000 events in the total sequence.
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the 00 nonevent was assigned to the day.  The resulting model contains 177 event codes (8*22 +

1).

This approach involves a relatively high level of aggregation, since it does not differentiate the

source or target of interactions with the four principals in the conflict.  This was done for three

reasons.  First, if I had tried to further differentiate sources and targets, the number of codes

required in the model would have increased geometrically:  For example looking only at the four

principals plus the international community would have involved 20 dyads, which would mean 441

codes, which leads to a parameter space of dimension 5,324, which makes consistent estimation

that much more difficult.  Second, because of th Serbia first Croatia, then Bosnia, then a Croat-

Bosnian alliance,a template chosen at any particular time would primarily consist of zero values for

almost all of the dyads, and therefore would not generalize easily.  This approach, in contrast,

essentially asks "What do Serbian (or Croatian, Bosnia, Kosovar) patterns look like when Serbia is

interacting with someone, anyone." Finally, the specific sources and targets are generally consistent

during a given pef time, so while the dyadic behaviors are aggregated, it is simple to identify the

actors responsible for most of the activity at any given point in time.

Estimation Algorithm

The HMM parameters were estimated by extensively modifying the source code written by

Meyers & Whitson (1995).  Their C++ code implements a left-right hidden Markov model and

the corresponding Baum-Welch maximum likelihood training algorithm.  I translated this code

from the Solaris C++ environment to a Macintosh CodeWarrior ANSI C environment, in the

process combining Meyers and Whitson's separate driver programs for training and testing into a

single program, and modifying the input format to handle the WEIS sequences.  I then extended

the code to handle the left-right-left (LRL) model, and implemented the Viterbi algorithm described

in Rabiner (1989) in order to estimate the most likely state sequence. In the process of extending

the model to the LRL form, I rewrote the estimation equations to correspond exactly to those in

Rabiner—the Meyers & Whitson implementation differed slightly from Rabiner's equations,

presumably because their models estimate a separate vector for "transition symbols."  These new

procedures produce estimates similar to those of Meyers & Whitson when all probabilities to

previous states are forced to zero.  This source code is available on the KEDS project web site:

http://www.ukans.edu/~keds/software.html.

The program requires about 2 Mb of memory for a system using 177 codes, 6 states and 100-

event sequences.  The largest arrays required by the program are proportional to (M+T)*N, where

M is the number of possible event codes, T is the maximum sequence length and N is the number
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of states.  Consistent with the CASCON and SHERFACS approaches, and with earlier work that I

did on the Middle East (Schrodt 1999, 2000), the models I estimated used 6 states.

On average, estimating a single 177-code, 6-state HMM model using 8 template sequences takes

about 0.80 seconds on a 350 Mhz Apple Macintosh G3, and calculating the probability of a given

sequence—i.e. doing a prediction—is practically instantaneous.  Unfortunately, this speed is

canceled out by the fact that the Baum-Welch algorithm is not very efficient at finding global

maxima, and therefore a combination of Monte Carlo and genetic algorithm methods were required

to locate good models [see discussion below].  In the protocols I've been using, a standard run

requires estimating 49,664 models (= 2* {[(24*64)+16]*16}) so it takes around 11 hours.  This

limited full evaluation to a couple of runs per day on a personal, so it was difficult to experiment with

a large number of parameters. However, I would reiterate that this is only a constraint on estimating

the optimal model—once models have been established, new data can be evaluated against these very,

very quickly.

[In the course of doing this research, I adapted the programs to run on a parallel supercomputer

at the National Center for Supercomputer Applications; this experience is described at

http://www.ukans.edu/~keds/NCSA.html.  The supercomputer definitely allowed greater

experimentation; these results are briefly summarized below.]

As noted above, the optimization surface of an HMM calculated using the Baum-Welch

algorithm is characterized by a very large number of local maxima.  This means that the resulting

the parameters—and the predictive accuracy—of the model depend heavily on the initial

approximation for those parameters.  In other words, the point where the estimation routine stops

depends heavily on where it starts, and those starting points occur in a 2156-dimensional space

—2 models * [(6 states * 177 codes) + 16 transition probabilities].

In order to efficiently explore this surface, I used a combination of Monte Carlo methods and

genetic algorithms.  This was done as follows (the capitalized variable names correspond to

constants in the estimation program):

1. A set of GA_VECT initial starting points for a pair of models—one for the high conflict

templates and one for the low conflict templates—was chosen (typically GA_VECT = 32).

The initial parameter values were chosen from a uniform [0,1] distribution, then normalized

so that they summed to 1.

2. An HMM was estimated for each of these starting points, then the "fitness" of the estimated

model was computed.  "Fitness" was some combination of correct minus incorrect

predictions (see below).



Schrodt: Forecasting Conflict Page 13

3. After all of the models had been computed, the vectors were sorted in descending order of

fitness.  Only the top GA_SURVIVE (=0.25) * GA_VECT vectors were saved.

4. The remaining (1 - GA_SURVIVE ) * GA_VECT vectors were replaced by reproducing the

surviving vectors using the standard genetic algorithm method: two "parents" were chosen at

random (the likelihood of choosing being proportional to their fitness), then a new vector

was created by taking the first NR elements of the first vector (where NR is a random

number) and the remaining elements from the second vector.  In addition, elements were

randomly mutated with probability GA_MUTATE (=0.10).

This process was repeated for GA_MAX_EON (=64) iterations, then the best-fitting model was

saved, and a set of predictions was made using that best-fitting model.  Finally, the GA was

repeated with a number of different starting points and templates (GA_EXPER, which was set at

16 but repeated multiple times in some cases).

The GA seems to work fairly efficiently, though it does not converge to a single model in the

Balkans case.  However, the range of optimal values is relatively limited, typically varying by

around 15% - 20% between the best and worst models.  This variation, while not ideal, is

considerably more limited than what I got using a simpler Monte-Carlo estimation.5  The GA is

not, however, a “magic bullet” and is itself quite time-consuming—I did a small number of

experiments where I estimated models using a pure Monte-Carlo search that involved the same

number of evaluations as the GA, and the GA gives only about a 10%-20% improvement in

accuracy for the same amount of work.  Other complex optimization approaches such as simulated

annealing might produce better results.

While I used GA_MAX_EON =64 in virtually all of the experiments, most of the optimization

tends to occur early in the process.6  I did some experiments (on a simpler model, Israel-Lebanon)

with altering the various parameters of the GA—GA_VECT, GA_SURVIVE and

GA_MUTATE—and the optimization doesn't seem very sensitive to these values.7 (I did a run of 16

                                                

5 This variation is partly due to the different choice of templates for high and low conflict periods: some templates
are going to be more "typical" than others, and consequently will provide a better fit.  In a separate experiment
on Israel-Lebanon data where a fixed set of templates was used, the variation among experiments was in the
range of 10%.

6 Virtually all of the optimization occurs in the first 32 eons of the genetic algorithm, and one could probably set
GA_MAX_EON =32 with almost no loss of accuracy.  This would increase the speed of the experiments by a
factor of 2.

7 I did a run of 16 experiments on the 3N model for the Balkans data with GA_VECT=48 and
GA_SURVIVE=0.33—in other words, keeping 16 rather than 8 of the "parent" vectors—and this made no
discernible difference in either the overall accuracy or the rate of convergence.
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experiments on the 3N model for the Balkans data with GA_VECT=48 and GA_SURVIVE=0.33

—in other words, keeping 16 rather than 8 of the "parent" vectors—and this made no discernible

difference in either the overall accuracy or the rate of convergence.)

Alternative Measures of Fitness

The fitness of the model-pairs is computed using

∑ ( wTP + wTN — wFP — wFN) 

where the waa correspond to the weights for a

TP: true positive high conflict predicted when high conflict occurs

TN: true negative low conflict predicted when low conflict occurs

FP: false positive high conflict predicted when low conflict occurs

FN: false negative low conflict predicted when high conflict occurs

This is equivalent to a weighted "right minus wrong" criterion:

(#correct predictions) minus (#incorrect predictions)

The sum is over all of the weeks in the data set (from 1 January 1991 to 26 January 1999); each

week is classified into one of these categories.

Because the data set is strongly skewed towards low-conflict weeks (80% of the cases), this

model will generally under-predict high-conflict: In particular a null model that predicts only low-

conflict for all weeks would have an impressive 80% accuracy, but it will also be quite useless.  This

is the perennial early warning problem of balancing Type I and Type II errors: how should a model

balance the possibility of false alarms with the possibility of missing actual cases of high conflict.

One can create a [useless] model with zero false alarms by never predicting high conflict, and one

can also create an equally useless model that misses none of the cases of high conflict by always

predicting high conflict.  There is no simple way around this tradeoff.
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The simplest way of doing this is to differentiate reward and penalize some types of predictions

over others.  I experimented with three different weighting systems:

wTP wTN wFP wFN

Unweighted 1.0 1.0 1.0 1.0

Entropy, FP 1.68 0.21 1.68 0.21

Entropy, FN 1.68 0.21 0.21 1.68

The entropy-based weights are suggested by the information theory computation of the entropy of a

sequence

E = -∑
i=1

C
 pi ln(pi) 

where

pi = the proportion of category i in the data and

C = the number of distinct categories.

and ln() is the natural logarithm.  By taking only the log of the proportion, one gets the weights

-ln( 0.186) = 1.68 high conflict

-ln( 0.814) = 0.21 low conflict

These weights were used as the "reward" for a correct prediction for each type of week.  I also

looked at two different ways of weighting the incorrect predictions: one using the high-conflict

weight to penalize false positives; the other uses the high-conflict weight on false negatives.8

Results

Models were estimated for the three forecasting horizons and the three weighting systems, a

total of nine models.  At least sixteen Monte-Carlo experiments were run for each model; in some

cases there are a larger number of models because I was able to salvage results from assorted

experiments.

In all of the tables and figures, the numerical prefix (1, 3, and 6) refers to the forecasting

horizon; the letter prefix (U, P, N) refers to the fitness weighting.  In some cases, I analyze

                                                

8 There is no particular reason that the penalty for incorrect predictions needs to have the same value as the reward
for correct predictions, but this will do for a first approximation.
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separately the best-fitting models (accuracy ≥ 0.795 for U and P models; accuracy ≥ 0.495 for N

models) and for all models.  Unless otherwise noted, the discussion will refer to the "best" models,

but the "all" results are presented for purposes of comparison and to give some sense of the

variance found in the estimates.  In all of the analyses, the U and P models produce very similar

results, with the N model being distinctive.

Overall Accuracy

The overall accuracy of the models is shown in Tables 1 and 2; additional tables show the four-

way classification accuracy.  Table 1 summarizes the number of models evaluated, the total number

of observations (i.e. total number of weeks predicted across all of the models), and the average

accuracy (true positive + true negatives).  The key result here is that the overall accuracy for the

best U and P models consistently show almost exactly 80% accuracy; the best N models

somewhat less consistently show about 52% accuracy.  The difference between the "best" and "all"

model sets9 is not dramatic—only about 5%—and quite surprisingly, there is very little drop-off in

accuracy as the time horizon increases.

[This last characteristic worries me a bit, but I have thoroughly checked through the program

code to make sure that this is not an artifact, and I can't find any errors.  In addition, I have also

used these programs to estimate models for a number of other conflict regions and the pattern of

small decreases in accuracy—rather than accuracy increasing and decreasing randomly—is found

consistently.  The reason for this lack of sensitivity to time lags may be due to the episodic

character of violence in the Balkans and elsewhere.  The data set is characterized by two extended

high-conflict periods—May-93 to June-94 and April-95 to October-95—with the remainder of the

period having only sporadic conflict, often lasting only a couple of weeks.  These gross

characteristics may be predictable quite far in advance.]

                                                

9 "All" includes the "Best" models
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Table 1
Summary of Estimated Models

Best Models All Models

Model # Models # Obsrv % Correct # Models # Obsrv %Correct

1-U 10 4090 80.7% 22 8998 78.5%

3-U 7 2800 80.6% 21 8400 76.9%

6-U 2 772 81.2% 16 6176 75.9%

1-P 7 2863 80.8% 29 11861 77.6%

3-P 11 4400 80.8% 54 21600 76.0%

6-P 3 1158 80.0% 16 6176 76.9%

1-N 15 6135 55.2% 16 6544 54.2%

3-N 8 3200 52.8% 16 6400 49.0%

6-N 7 2702 53.7% 16 6176 47.7%

Tables 2a and 2b show the accuracy of the forecasts broken down by high-conflict and low-

conflict weeks respectively.  The "observed" column gives the percentage of the weeks that were

correctly forecast : this proportion is 
TP

TP+FN  for high conflict and 
TN

TN+FP  for low conflict.  It is

the percentage of time that a high or low conflict week would have been predicted correctly.

The "forecast" column, in contrast, gives the percentage of the weeks that were forecast as

having high or low conflict actually turned out to have the predicted characteristic.  This is 
TP

TP+FP  

for high conflict and 
TN

TN+FN  for low conflict.  It is the percentage of time that a type of prediction

is accurate.

As indicated in the discussion of the weighting systems, the N-type models operate very

differently than the U- and P-type models.  As shown in Table 1, U and P models have a high

overall accuracy.  However, this accuracy comes almost entirely from correctly forecasting low-

conflict weeks—U and P models predict about 95% of these weeks correctly, but correctly predict

only about 25% of the high-conflict weeks.  N-type models, in contrast, predict about 85% of the

high-conflict weeks correctly (and 45% of the low-conflict weeks).
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Table 2a
High Conflict Weeks

Best Models All Models

Model Observed Forecast Observed Forecast

1-U 24.2% 55.5% 31.3% 45.7%

3-U 26.9% 57.1% 27.9% 41.6%

6-U 30.1% 63.3% 32.3% 42.2%

1-P 21.3% 55.0% 29.3% 40.8%

3-P 22.7% 57.1% 29.0% 37.9%

6-P 24.3% 57.1% 25.9% 42.6%

1-N 92.8% 28.6% 92.67% 28.1%

3-N 86.8% 27.3% 88.1% 25.9%

6-N 86.2% 28.5% 88.5% 26.3%

Table 2b
Low Conflict Weeks

Best Models All Models

Model Observed Forecast Observed Forecast

1-U 95.1% 83.1% 90.5% 83.8%

3-U 94.7% 83.2% 89.7% 82.6%

6-U 95.2% 83.3% 87.9% 82.6%

1-P 95.6% 83.0% 89.5% 83.7%

3-P 95.7% 82.7% 87.9% 82.9%

6-P 95.06% 82.2% 90.6% 82.0%

1-N 46.5% 96.5% 45.3% 96.4%

3-N 44.6% 93.4% 39.6% 93.3%

6-N 45.5% 92.9% 37.4% 92.8%
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From the perspective of forecasting, the N-type models are best at warning against the possible

"bolt out of the blue,".  However, this comes at a price of a lot of false alarms: when an N-type

model forecasts a high-conflict week, there is only about a 30% chance that this will occur.10  A

high-conflict prediction by a U- or P-type model, meanwhile, will result in an actual high-conflict

week in about 60% of the cases.

Time Series Analysis

Figures 4 through 6 show display the accuracy of the various models as a 5-week centered

moving average.11  (In the event you are reading a photocopy of this, the original graphs are in

glorious color; these can be found in the electronic version of the paper.  The correlation between

the three forecast periods is quite high, so you are not missing much in black-and-white.)

"Accuracy" is computed as the percentage of the "best" models that correctly classify each week.

For reference, Figure 7 shows the target sequence of WEIS 22-type events, at the same scale as the

remaining figures (the heavy line is a 5-week centered moving average).

There are some general patterns to the accuracy.  All three models are very accurate at the

beginning and end of the series, prior to about April 1992 and following April 1997.  During the

period October-94 to October-97, the U/P and N models are almost perfect mirror images of each

other—when the accuracy of one type of model is high, the other is low, and vice-versa.  (This also

means that the models are making opposite predictions: for example following October-95, the P

models almost always [correctly] predict low conflict, whereas the N-models predict high conflict.)

This is not merely a visual effect: the correlation (r) for the 3-N versus 3-P models is -0.59 for

Oct-91 to Mar-97, and -0.28 for the entire period.

Curiously, the N-model takes a very long time—almost eighteen months—to recover accuracy

after the implementation of the Dayton Accords, which might suggest that despite the fact that

these agreements resulted in a sudden cessation of hostilities, the preconditions for violence

remained in place and Dayton may in fact have had a major impact in actually enforcing peace. The

accuracy in the 1993 period is medium for both models; this is probably partly due to the fact that

the high-low classifications are fluctuating rapidly during this period.

                                                

10 However, as noted below, some of these false positives are "near misses" in the sense of predicting high conflict
in weeks that fall just short of the 20-event threshold.  Furthermore, many of these errors occur during the period
of the implementation of the Dayton Accords, and if that period is eliminated from the analysis, the forecast
accuracy of the N models is probably closer to 50%.

11 The moving average is used for purposes of clarity—the weekly accuracy fluctuates very rapidly in places,
resulting in a graph that is very difficult to read.
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 Figures 8 and 9 [attempt to] show the accuracy for high-conflict weeks only for the P and N

models.  These figures reinforce the points made earlier about the relative accuracy of the two

approaches, and are primarily important for what they don't show: (1) there is no clear

differentiation in the predictive accuracy of the 1, 3 and 6-month forecasts and (2) the accuracy is

fairly consistent over time, except for the tails of the series (including 1992 for the N model).

Figure 4.

Accuracy of U-Models, 5-week Moving Average
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Figure 5.

Accuracy of P-Models, 5-week Moving Average
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Figure 6.

Accuracy of N-Models, 5-week Moving Average
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Figure 7.

Number of WEIS 22 Events per Week
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Figure 8.

P-Model Accuracy, High Conflict Weeks Only
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Figure 9.

N-Model Accuracy, High Conflict Weeks Only
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Purely Predictive Models

All of the analyses reported above use templates from the entire period to develop the models.

This means that some of the "predictions" of the models—on average, 50% of the period—are in

fact retrospective in that they are based on templates that occur after the week that is being

classified.  In contrast, this section will evaluate two sets of models that are purely predictive: the

templates will be chosen from the period prior to the weeks being evaluated.

Two different schemes were used to do this.  The entire time period was subdivided by

calendar years: 1993, 1994, 1995, 1996, 1997 and 1998.  Let Ck refer to the beginning of the first

full week of year k.

Prior Templates: Templates were taken from any time prior to Ck; predictions were evaluated

on all of the weeks greater than Ck.

Recent Templates:  Templates were taken from the time period Ck-1 > t > Ck; predictions were

evaluated on the weeks Ck > t > Ck+1.12

In other words, the “prior” scheme takes templates from any time before the beginning of a year,

and then evaluates the accuracy of the prediction on all of the remaining weeks in the data set,

whereas the “recent” scheme takes templates only from the previous year (where possible) and

evaluates accuracy on a single year.  The relationship between these schemes is illustrated in

Figure 9.13

                                                

12 Because of the small number of high-conflict weeks at the beginning and end of the sequence, there were not
enough high-conflict weeks to provide an adequate number of templates (8) for some years, so this was
implements by chosing high-conflict templates from 1991 and 1992 for the year 1993, and for 1996 to the
beginning of the year for 1997 and 1998.

13  Note: Due to a last minute reorganization of the paper, there is a gap in the table and figure numbers here.
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Figure 9.
Prediction Schemes

Year Ck

Time period for templates

Time period for predictions

Full Prior Recent

These changes required relatively few changes in the program, but the estimation times increases

by roughly a factor of six: Using 16 Monte-Carlo experiments per year, the prior templates

estimation takes approximately 2000 minutes (33 hours) to run on a 350 Mhz Macintosh G3; the

recent templates estimation takes approximately 1400 minutes (23 hours). [The difference is due to

the fact that the recent model needs to classify only 52 weeks, whereas the prior model evaluates all

313 weeks].  Given these constraints, only the P and N models were evaluated.

The results of this analysis are reported in Tables 5 and 6.  In general, both of the predictive

analyses mirror the full-sample analysis in the sense that most of the figures are within ±20% of

the earlier results.  The differences between the P- and N-models that were found in the full-

sample analysis continue to be reflected in the predictive analysis, though it seems to be somewhat

more attenuated.  There also seems to be more of a tendency for the 6-month forecast to be less

accurate than the 1-month forecast, though these differences are frequently small (less than 10%)

and the pattern is not universal.

As expected, these results differ substantially over time, with the high-conflict years 1993, 1994

and 1995 generally having one pattern (consistently better or worse predictions, depending on the

model), 1996 being an intermediate years, and 1997 and 1998 having a single pattern. There are a

few exceptions to this—for example the “%High Forecast” indicator for the P-model is

uniformly awful—but it holds more often than not.  [Also note that the sample sizes in the later
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years of the prior analyses are relatively small—particularly for the high-conflict weeks—so the

accuracy fluctuates more wildly than it does in the full-sample analysis.]

It should be noted that in many cases, the purely-predictive models perform better than the full-

sample model, which is frequently not the case in statistical analyses.  This is probably due to the

model being able to adapt to the changing characteristics of the system, for example the shift in the

focus of the conflict from Croatia to Bosnia to Kosovo, as well as adapting to the periods of low

conflict.  In some situations, this adaptation can be counter-productive, notably as the prior model

adapts to the high-conflict period prior to 1996 and then finds almost no conflict to predict after

1996.  This can lead to situations where there is a great deal of difference between the relative

accuracy in predicting high-conflict and low-conflict weeks.  But in a majority of the cases, the

short-term adaptation produces substantially better predictions.  This will be discussed further in

the next section.



Schrodt: Forecasting Conflict Page 29

Table 5a. Accuracy of P-Models for Prior Forecast Templates and Predictions;

Accuracy Computed on Full Period after Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 53.57 68.80 74.15 78.96 90.16 94.31

3 60.73 61.86 61.38 81.21 82.75 90.85

6 67.33 59.39 67.34 73.29 89.41 85.71

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 39.55 27.93 20.83 35.00 12.50 6.25

3 29.11 31.52 35.19 33.75 31.25 0.00

6 23.54 48.54 29.63 40.00 25.00 25.00

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 57.76 77.61 81.89 80.37 90.89 95.91

3 70.18 68.41 65.19 82.73 83.24 92.50

6 80.43 61.73 72.82 74.36 90.01 86.82

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 21.89 21.19 14.31 5.41 1.27 2.70

3 22.61 17.70 12.79 5.90 1.71 0.00

6 26.47 21.47 13.66 4.76 2.29 3.33

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 76.16 83.32 87.69 97.47 99.11 98.25

3 76.79 82.25 87.39 97.50 99.23 98.07

6 77.86 84.76 87.70 97.48 99.23 98.45
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Table 5b. Accuracy of N-Models for Prior Forecast Templates and Predictions;

Accuracy Computed on Full Period after Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 53.86 40.24 37.35 28.14 42.42 69.53

3 55.93 26.30 26.73 23.10 30.32 56.70

6 67.82 32.08 25.29 21.16 27.84 48.55

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 44.26 84.18 82.87 96.25 50.00 37.50

3 37.59 91.22 90.05 83.75 56.25 37.50

6 23.20 89.63 93.75 93.75 87.50 56.25

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 56.74 30.76 30.75 25.96 42.35 70.11

3 61.42 12.30 17.54 21.15 30.08 57.05

6 81.17 19.67 15.36 18.83 27.28 48.41

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 23.44 20.77 14.80 4.00 0.80 2.23

3 22.57 18.32 13.68 3.29 0.75 1.56

6 26.94 19.39 13.85 3.57 1.11 1.94

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 77.29 90.02 92.52 99.54 98.91 98.41

3 76.69 86.67 92.39 97.60 98.66 98.05

6 77.94 89.79 94.42 98.95 99.57 98.38
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Table 6a. Accuracy of P-Models for Recent Templates; Prediction Accuracy by

Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 49.28 52.52 54.81 79.25 96.27 96.75

3 48.80 52.16 47.60 75.12 93.87 97.96

6 47.96 47.12 54.93 51.65 95.43 94.35

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 33.41 41.25 42.33 28.12 0.00 0.00

3 16.83 55.94 27.27 28.12 0.00 0.00

6 9.13 57.81 40.06 29.69 0.00 0.00

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 65.14 59.57 63.96 83.42 96.27 98.64

3 80.77 49.80 62.50 78.95 93.87 99.88

6 86.78 40.43 65.83 53.44 95.43 96.20

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 48.94 38.94 46.27 12.16 0.00 0.00

3 46.67 41.06 34.78 9.84 0.00 0.00

6 40.86 37.76 46.23 4.95 0.00 0.00

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 49.45 61.87 60.20 93.43 100.00 98.05

3 49.27 64.39 53.96 93.08 100.00 98.07

6 48.85 60.53 59.96 90.30 100.00 98.00
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Table 6b. Accuracy of N-Models for Recent Templates; Prediction Accuracy by

Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 48.08 42.07 47.00 52.95 76.20 94.59

3 47.96 43.03 44.23 39.98 74.16 97.36

6 47.12 41.59 49.64 28.89 77.04 94.11

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 42.55 73.75 83.24 53.12 0.00 0.00

3 31.73 81.56 73.3 62.50 0.00 0.00

6 17.07 86.88 91.19 76.56 0.00 6.25

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 53.61 22.27 20.42 52.93 76.20 96.45

3 64.18 18.95 22.92 38.14 74.16 99.26

6 77.16 13.28 19.17 25.00 77.04 95.83

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 47.84 37.22 43.41 8.44 0.00 0.00

3 46.98 38.61 41.08 7.62 0.00 0.00

6 42.77 38.5 45.28 7.69 0.00 2.86

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 48.27 57.58 62.42 93.26 100.00 98.01

3 48.46 62.18 53.92 92.57 100.00 98.06

6 48.2 61.82 74.80 92.89 100.00 98.12
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Comparison of Forecast Accuracy by Year

The “recent” prediction scheme is the most sensitive to the changing character of the conflict.

The annual statistics in Table 6 are also the most straightforward to evaluate, because each

prediction is done on 52-weeks, in contrast to the variable number of weeks in the prediction

period in the “prior” scheme.

In order to get a systematic evaluation of the effect of changing the level of adaptation in the

model, the results from the full-sample and prior analysis were re-analyzed on an annual basis: In

other words, rather than assessing the accuracy on a period that extends to the end of the data set,

the accuracy for each year (52 weeks) of the data was tabulated.  (The optimization of the model

was done as before—in fact this is simply a retabulation of the existing results, not a new set of

estimations.) These results are reported in Tables 7 and 8, which are directly comparable to Table

6.

Figures 10, 11 and 12 show the comparative level of accuracy of the three methods for the 3-

month lead.  When the relative level of accuracy is compared across the estimation methods, two

patterns are evident in these figures.

 First, there is generally a single rank ordering of the accuracy of the three methods across

time: For example, if the recent and prior schemes (or full-sample and recent schemes) have

roughly the same level of accuracy on one year, they will have this on all years.  The exceptions

that occur in this are usually at the ends of the data set, 1993 and 1998.  There is quite a bit of

variation in the patterns across the accuracy measures and estimation techniques, however.

Second, the full-sample scheme is almost always better than the prior scheme; when this is no

true, the prior scheme and the recent scheme usually have about the same level of accuracy.  In all

cases, the prior scheme is either the least accurate of the three—in some cases dramatically less

accurate, as in Figure 12b , or else it is comparable in value to one of the other two measures.

These results suggest rather strongly that if one is in a predictive mode (as distinct from

retrospectively analyzing a period of time, or using one set of interactions to try to predict behavior

in a different region), then it is best of use short-term adaptation.  In many cases, the short-term

model does also as well as the full-sample model, and in Figure 10b, it does substantially better in

the later years.  HMMs seem to work best when they can “forget”—in the sense of ignoring

older information—as well as “learn.”

The optimal set of training templates might be one that effective has an “exponential decay” in

the sense of having more templates from recent history than from distant history.  To a certain

extent, this was done already in the latter years in this analysis, since it was necessary to go further
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back in time to pick up sufficient examples of high-conflict weeks.14  Simply accumulating

additional information on an on-going conflict as it becomes available—which is effectively what

the “prior” scheme does—does not seem to be a good idea: from a statistical perspective, these

are non-stationary systems.  On the other hand, one would still like to have some way of

maintaining a “memory” of the precursors to high-conflict situations in a situation which has

been peaceful for some time; this might be provided either by instances of earlier conflict in the

region (even if it occurred a number of years earlier), or with some generic templates for conflict in

comparable regions.  In Schrodt (1999) I was able to use hidden Markov models generated from a

set of 19th and 20th century crises (the BCOW data set) to provide a reasonably good measure of

conflict in the Israel-Palestine conflict, and based on this, it might be possible to find some good

archetypical models for conflict in areas that have generally been conflict-free.

                                                

14  However, this result has certainly been affected to some extent by the fact that the Balkans conflict went
through four or five very distinct subphases—the initial conflict with Croatia, followed by the conflict with
Bosnia, followed by the combined Croatia-Bosnian counter-offensive and brief NATO attacks, followed by the
peaceful Dayton period, and ending with the lead-up to the Kosovo conflict.  Because the coding system is
sensitive to the presence or absence of activity by individual actors, it may to overly sensitive to these shifts and
unable to pick up a general pattern for “conflict.”  It would be interesting to compare these results with a model
of a highly-institutionalized conflict such as Israel-Lebanon or Turkey-Kurds.
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Figure 10a
%Correct by Year, 3P Models
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Figure 10b
% Correct by Year, 3N Models
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Figure 11a
% High Correct by Year, 3P Models
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Figure 11b
% High Correct by Year, 3N Models
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Figure 12a
% Low Correct by Year, 3P Models
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Figure 12b
% Low Correct by Year, 3N Models
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Table 7a. Accuracy of P-Models for Prior Sample Templates; Prediction

Accuracy by Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 48.44 51.08 52.88 67.45 95.31 94.11

3 48.80 49.88 47.36 76.30 88.34 91.71

6 47.00 49.52 53.37 65.57 93.39 87.74

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 39.18 35.31 19.03 34.38   --- 6.25

3 28.12 40.31 31.53 28.12   --- 0

6 23.32 56.56 29.26 39.06   --- 25.00

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 57.69 60.94 77.71 70.15 95.31 95.83

3 69.47 55.86 58.96 80.23 88.34 93.50

6 70.67 45.12 71.04 67.73 93.39 88.97

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 48.08 36.10 38.51 8.59 0 2.86

3 47.95 36.34 36.04 10.40 0 0

6 44.29 39.18 42.56 8.99 0 4.26

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 48.68 60.12 56.69 92.91 100 98.12

3 49.15 59.96 54.01 93.19 100 97.95

6 47.96 62.43 57.80 93.16 100 98.37
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Table 7b. Accuracy of N-Models for Prior Sample Templates; Prediction

Accuracy by Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 46.15 39.30 42.91 14.98 31.01 69.95

3 47.24 40.75 41.95 17.45 16.47 56.49

6 46.27 42.43 45.67 17.57 23.56 48.56

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 41.35 87.19 83.81 98.44   --- 37.50

3 34.13 93.12 88.92 87.50   --- 37.50

6 24.76 90.62 94.60 93.75   --- 56.25

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 50.96 9.38 12.92 8.16 31.01 70.59

3 60.34 8.01 7.50 11.73 16.47 56.86

6 67.79 12.3 9.79 11.35 23.56 48.41

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 45.74 37.55 41.37 8.05 0 2.44

3 46.25 38.75 41.35 7.49 0 1.68

6 43.46 39.24 43.47 7.95 0 2.09

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 46.49 53.93 52.10 98.46 100 98.29

3 47.81 65.08 48.00 92.00 100 97.89

6 47.39 67.74 71.21 95.70 100 98.26
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Table 8a. Accuracy of P-Models for Full Sample Templates; Prediction Accuracy

by Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 56.32 65.11 62.64 90.03 100 97.53

3 54.55 64.16 66.61 90.57 97.90 97.38

6 62.18 64.74 62.18 87.42 98.72 95.51

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 25.56 25.18 20.27 14.29   --- 14.29

3 16.43 25.23 30.08 22.73   --- 9.09

6 32.89 25.00 16.67 0.00   --- 33.33

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 86.41 89.78 91.67 96.21 100.00 99.16

3 92.66 88.14 92.26 96.10 97.90 99.11

6 90.00 89.58 95.56 94.56 98.72 96.73

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 64.79 60.34 62.5 23.53   --- 25.00

3 69.12 56.70 73.20 32.26 0 16.67

6 75.76 60 73.33 0 0 16.67

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 54.27 66.01 62.66 93.22 100 98.33

3 52.58 65.68 65.26 93.84 100 98.23

6 58.54 65.65 60.99 92.05 100 98.67
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Table 8b. Accuracy of N-Models for Full Sample Templates; Prediction Accuracy

by Year

% Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 50.26 40.38 46.28 30.19 70.00 93.46

3 50.00 43.75 48.80 34.43 57.21 81.25

6 54.40 45.60 48.08 33.69 55.77 73.90

% High Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 95.86 97.79 94.70 95.00   --- 26.67

3 89.74 91.72 92.59 87.50   --- 50.00

6 92.44 92.91 90.14 89.29   --- 42.86

% Low Correct

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 10.77 9.82 15.69 24.90 70.00 94.77

3 14.93 18.08 20.87 30.10 57.21 81.86

6 20.31 20.25 21.17 29.15 55.77 74.51

% High Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 48.19 36.60 41.51 9.36 0 9.09

3 48.21 37.46 42.74 9.27 0 5.13

6 50.96 38.44 42.24 9.33 0 3.19

% Low Forecast

1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8

1 75.00 89.29 82.42 98.39 100 98.51

3 62.26 80.33 81.54 96.72 100 98.82

6 75.00 84.21 77.05 97.09 100 98.52
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Assessment of differences between the high-conflict

and low-conflict models

The HMM has a very diffuse coefficient structure: the high and low models each have 1,078

parameters (177 observation probabilities plus 16 transition probabilities), so determining how to

predict a week fits the high or low conflict category involves 2,156 parameters.  Add the fact that

this analysis has looked at three different weighting schemes and three forecasting horizons, and

one is looking at 19,404 parameters; if the prospective and recent models are included, there are

58,212 parameters.  Add the fact that we are using Monte Carlo methods, so that each of those

conditions was duplicated at least 16 times, and the analysis has actually produced in excess of

931,392 parameter estimates.  That's a lot of parameters...

On the positive side, these parameters all have straightforward interpretations (in contrast, for

example, to the weights of a neural network).  The larger observation probabilities correspond to

the behaviors that are being "watched" by the model in order to make a prediction.  In this analysis,

the transition probabilities are of interest primarily to determine the number of Markov states that

are actually found in the process.  The differences between the high and low models will show the

characteristics of the system that are most likely to distinguish between pre-conflict and pre-peace

periods.

In order to make sense of this mass of information, I'm focusing the analysis somewhat:

• Only the full-sample runs have been analyzed—these are likely to be most representative of

the results of the entire sample.

• Only the P and N models are compared—as in the prediction analysis, the parameter

estimates of the U and P models are very similar and with very few exceptions, anything true

of the P model will also be true of the N model.

• Most of the analysis will focus on the 3-month forecast—there are some differences between

the forecasting horizons, and these will be explored below—but in general the major

differences are found between the high and low conflict models, and between the P and N

weighting systems.

• Most of the analyses will be done using the "reduced" models (see discussion below)
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Because the parameter estimates result from Monte Carlo estimation, they will be analyzed

statistically.  As before, the "All" results refer to the analysis of all of the Monte Carlo runs; the

"Best" results are only those with accuracy ≥ 0.795 for  P models and accuracy ≥ 0.495 for N

models.

State Reduction Criteria
This section gives details on the algorithm used to reduce the number of states in a model through

elimination and combinion of states that will occur very rarely.  In this discussion, the notations pi,

ri, and ni refer to the transitions to the previous state, same state, and next state respectively.

"Small" probabilities are—somewhat arbitrarily—defined as those less than 0.1; "large"

probabilities are defined as those greater than 0.9.15;

Small values of ri occur in two circumstances:

• transient states: ri is small; pi and pi+1 are not large.  In this case, the system will simply pass

through the state quickly and that state will be responsible for very few events in the sequence.

• cyclical pairs: ri and ri+1 are small; ni and pi+1 are large.  In this case, the system will remain

inside this pair of states for a significant period of time, but switch between state i and i+1 for

every other event

While other combinations are logically possible—for example one could have a cyclical

triplet—virtually all of the cases of small ri values fall into these categories.

The transient case can be simply eliminated from the model.  The only situation where this

removes any important information is when pi is very small, in which case the state is acting as a

one-way valve—once the system has passed through the state, it will not return to the earlier states.

These situations are fairly common—in fact in a number of cases the estimated pi is zero—but I

have not tried to analyze them separately.

The cyclical pair, in contrast, can be mathematically reduced to a single state.  The pair forms a

Markov chain of the form

p
r n

p r
ni

i+1 i+1

i+1

i i

Because ri + ni < 1 and pi+1 + ri+1 < 1, the middle matrix is not strictly a Markov chain, so these

are standardized by row, e.g. ri is replaced with  
ri 

 ri + ni
 .

A Markov chain relatively quickly reaches an equilibrium distribution where it spends a known

                                                

15 ri has a highly bimodel distribution...
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proportion of time in each of the states.  Feller (1968: 432) shows that the Markov chain

p

q 1 - q

1 - p

has the equilibrium distribution [
q

 p + q ,
p

 p + q ].  This formula will be used to give the weights to

the observation probabilities when reducing cyclical states.  (In practice, ni and pi+1 are sufficiently

close in value that this gives much the same results as simply weighting the two observation vectors

equally)

Interpreting the t-test tables
Much of this analysis is based t-test tables such as the following:

HIGH CONFLICT
PARAMETER T-TESTS AGAINST MARGINALS FOR MODEL P3
State 0
         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD  -5.127    ***    ---    ---    +++  -3.948    ---    ---
COMMNT    ---   8.004    ---   2.495   2.321  12.233  -4.772  -3.849
CONSLT    ---   7.845    ---    ---   2.329    +++  -6.469  -8.034
APPROV    ---  -3.651    ---    +++    ---  -4.874    --- -11.946
PROMIS    ---    ---    ---    ---    ---  -3.150    ---  -3.085
GRANT  -2.735  -2.976    ---    ---    +++    ---    ---  -2.719
REWARD    ---    ---    ---    ---    ---    ---    ---  -4.266
AGREE  -3.535  -3.592  -5.826  -7.120  -3.418  -2.324 -13.352 -10.067
REQEST    ---    +++    +++  -2.234  -2.466  -5.893    ---  -2.247
PROPOS  -6.552    ---    ---    +++    ---    ---    ---  -4.674
REJECT    ---    ---    +++    ---   3.707    +++    ---  -2.901
ACCUSE    +++    ---    ---   3.033   2.546    ---    ---    ---
PROTST  -2.252  -3.447    +++    ---  -2.396    ---    --- -11.946
DENY     +++  -3.255    ---    ---   2.502  -6.648    ---    +++
DEMAND    ---    ---    +++    ---    ---    ---    ---    ---
WARN   -2.141    ---  -2.679    ***    ---  -3.734    ---    ---
THREAT  -2.636    ---    ---    ---    ---    ---    ---    ---
REDUCE    ---    ---    ---    ---    ---    ---    ---  -2.531
EXPEL    ***    ---    ---    ---    ---    ---    ---  -8.707
SEIZE    ---    ---    ---    ---    ***    ---    ---    ---
FORCE    ---  -2.262  -3.914    ---    ---  -2.341    ---    ---
NULL     ---  -2.135    ---    ---    ---  -3.501  -3.000  -8.602
NONEVT  -5.414

These tables are designed to make it relatively easy to determine where the significant relations

in the estimated observation probabilities exist.  The first three lines—whose content will vary with

the individual test—identify the test and the observation vector:  In this case the vector is for State 0

of the P weights, 3-month forecast, high-conflict model; the t-test compares the estimated

probabilities with the marginal probabilities.
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The matrix of t-test has the event codes in the rows and the dyadic interactions *in the columns.

The rows are labeled with the WEIS codes (these are either mnemonics, as in this example, or two-

digit numerical codes in some of the earlier runs).  The columns are labeled with the dyads: the

notation BOS> refers to all actions where Bosnia is the source; >BOS refers to all actions where

Bosnia is the target. (the notation <BOS is used in some earlier versions of the program).  The

abbreviations are BOS = Bosnia; CRO = Croatia; SER = Serbia; KSV = Kosovo.

Only the significant t-tests are shown.  The following thresholds are used:

|t | > 2.0 Print the actual value; this is approximately the critical value for the 0.05

significance level

2.0 ≥ |t | > 1.72 Print "***" ; this is approximately the critical value for the 0.10 significance 

level

1.72 ≥ |t | > 1.32 Print "+++";  this is approximately the critical value for 0.20 significance 

level

1.32 ≥ |t |  Print "---"

The selected critical values are for a t-test with 20 degrees-of-freedom.  Note that the sample size

varies depending on the individual model, so these critical values are only approximate; in the case

of some of the "best" tests, they slightly over-estimate the significance level.16

When the reduced forms of the high and low models are being compared, there is an additional

problem of comparing the different number of models where a particular state exists (in other

words, because of state reduction, there will be fewer instances of models containing four, five or

six states than models having three states).  There [obviously] must be at least two cases of a

particular state in both models (e.g. high and low; 1-month and 6-month) for the t-test to be

computed.

Interpreting the t-test maps

In order to provide a means of visualizing all of the parameters simultaneously, this report

includes a number of color-coded maps that show the t-tests for all of the codes and dyads.  The

                                                

16 It would be straightforward to adjust these tables so that they reflect true significance levels, but since the levels
of significance tests are themselves rather arbitrary—contrary to popular belief in social science statistical
circles, there is little evidence that Moses descended from Mt. Sinai bearing tablets that said "α < 0.05!"—this
didn't seem to justify the trouble involved in entering a t table into the program used to generate these tables.  In
all cases, the highest t-values are substantially greater than 2.0, and more generally, the number of significant t-
values far exceeds what would be expected by chance under the null hypothesis of no differences, so the critical
value of 2.0 is not particularly important in the analysis.
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red areas indicate t-test that have high positive values; the blue areas have high negative values; and

the green areas are close to zero.

These maps are produced from surface-plots in Microsoft Excel, which introduces a few quirks.

First, the "points" being plotted are the intersections of the grid line, not the squares outlined by the

grid (ideally, these plots should be done as a grid of appropriately colored squares, but this isn't an

option in Excel).  Excel also interpolates between adjacent points, so there may be several color

bands between two values.  Technically, the codes are discrete so this is meaningless, though

because WEIS codes form a rough cooperation-to-conflict continuum, it makes some sense in the

horizontal direction (and probably enhances one's ability to make sense of the map).  Second, only

eight ranges are plotted, and in fact the "3 - 4" range is actually >3.0 for positive numbers and < -

3.0 for negatives.  Finally, in order to keep the scaling consistent across the graphs, in a few cases I

put an artificial "-3.0x" value in the KSV>:YIELD category.

Parameter comparisons

This section will discuss each of the following comparisons.

• Number of states in the reduced models;

• Pattern of coefficients that are significantly different from the observed distribution of the

codes in the data;

• Pattern of coefficients that are significantly different in the high and low models

• Comparison of 1-month and 6-month forecast models

The t-test tables themselves are very lengthy—each requires about 2500 lines, or roughly 40

single-spaced pages for the full model—so with a few exceptions these have not been included in

the paper. In some instances, summary-maps of the distributions will be used instead.

Number of states in the models

As noted above, both transient and cyclic states occurred frequently in the estimates,

indicating—with one possible exception—that the six-state framework was adequate to account for

the observed sequences.  The tables that follow show the proportion of non-transient and cyclic

states in original matrices, and the average number of states in the reduced matrices, by weight and

forecast period.

As usual, the U/P and N models tend to mirror each other.  In the P models, the high model

has about 20% cyclic states, while the low model has only about 1% to 2%; in the N model this

ratio is reversed.  In all of the low models, only about 60% to 70% of the states in the low model
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are non-transient (that is, neither transient nor cyclical); the high model in the U/P wieghts has even

fewer non-transient state, but in the N model around 90% of the states are non-transient.

These characteristics are reflected in the average number of states in the reduced models.  All

of the models except the N-weight high model average about 4.5 states.  In most cases, the low

models have fewer states than the high models, though this difference is generally only around a

0.3 to 0.6 states.  The standard deviations are relatively low.17

The one exception is the N-type, high model, where the reduced models still have nearly six

states.  This would certainly suggest that moving to a larger model for this situation (or for models

with similar weights) might be appropriate.  This may be due to the fact that the N-type models

specialize in accurately forecasting the more complex, high-conflict category, which may require

the greater level of detail that is possible with a model with a greater number of states.  P-type

models, in contrast, are better with low-conflict weeks, and there is a consistent tendency for low-

conflict models to require fewer states than high-conflict models.

                                                

17 Because the distribution is bounded on the right—no model has more than six states—this is probably not
normally distributed.  The standard deviations of the "best" models are actually higher than those of the complete
set of models, which runs contrary to my expectations; this may be partly a function of the low sample sizes.



Schrodt: Forecasting Conflict Page 48

Table 9a.
Proportion of Non-transient and cyclic states in original matrices
All Models

Model Total Non- Cyclic %Non- %Cyclic
states transient transient

U1
HIGH: 132 69 25  52.27%  18.94%
LOW: 132 91 1  68.94%   0.76%

U3
HIGH: 126 65 26  51.59%  20.63%
LOW: 126 81 2  64.29%   1.59%

U6
HIGH: 96 57 14  59.38%  14.58%
LOW: 96 74 0  77.08%   0.00%

P1
HIGH: 174 93 37  53.45%  21.26%
LOW: 174 115 8  66.09%   4.60%

P3
HIGH: 324 184 69  56.79%  21.30%
LOW: 324 204 5  62.96%   1.54%

P6
HIGH: 96 55 18  57.29%  18.75%
LOW: 96 72 1  75.00%   1.04%

N1
HIGH: 96 87 1  90.62%   1.04%
LOW: 96 55 14  57.29%  14.58%

N3
HIGH: 96 92 1  95.83%   1.04%
LOW: 96 51 17  53.12%  17.71%

N6
HIGH: 96 89 2  92.71%   2.08%
LOW: 96 53 21  55.21%  21.88%
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Table 9b.
Proportion of Non-transient and cyclic states in original matrices
Best Models Only

Model Total Non- Cyclic %Non- %Cyclic
states transient transient

U1
HIGH: 60 30 11  50.00%  18.33%
LOW: 60 38 1  63.33%   1.67%

U3
HIGH: 42 21 9  50.00%  21.43%
LOW: 42 30 2  71.43%   4.76%

U6
HIGH: 12 8 1  66.67%   8.33%
LOW: 12 8 0  66.67%   0.00%

P1
HIGH: 42 26 8  61.90%  19.05%
LOW: 42 27 2  64.29%   4.76%

P3
HIGH: 66 41 12  62.12%  18.18%
LOW: 66 49 1  74.24%   1.52%

P6
HIGH: 18 12 3  66.67%  16.67%
LOW: 18 12 0  66.67%   0.00%

N1
HIGH: 90 81 1  90.00%   1.11%
LOW: 90 53 13  58.89%  14.44%

N3
HIGH: 48 46 0  95.83%   0.00%
LOW: 48 27 7  56.25%  14.58%

N6
HIGH: 42 37 1  88.10%   2.38%
LOW: 42 22 10  52.38%  23.81%
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Table 10a.
Number of States in the Reduced Models
All Models

Model Total Non-    Mean Stdev
models transient per model per model

U1
HIGH: 22 94   4.27    0.686
LOW : 22 92   4.18    1.230

U3
HIGH: 21 91   4.33    0.642
LOW : 21 83   3.95    0.898

U6
HIGH: 16 71   4.44    0.788
LOW : 16 74   4.62    1.111

P1
HIGH: 29 130   4.48    0.725
LOW : 29 122   4.21    1.349

P3
HIGH: 54 249   4.61    0.591
LOW : 54 209   3.87    1.504

P6
HIGH: 16 73   4.56    0.704
LOW : 16 73   4.56    0.998

N1
HIGH: 16 88   5.50    1.061
LOW : 16 67   4.19    1.014

N3
HIGH: 16 93   5.81    0.527
LOW : 16 68   4.25    0.750

N6
HIGH: 16 91   5.69    0.583
LOW : 16 74   4.62    0.484
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Table 10b.
Number of States in the Reduced Models
Best Models Only

Model Total Non-    Mean Stdev
models transient per model per model

U1
HIGH: 10 41   4.10    0.700
LOW : 10 39   3.90    1.136

U3
HIGH: 7 30   4.29    0.700
LOW : 7 32   4.57    0.728

U6
HIGH: 2 9   4.50    0.500
LOW : 2 8   4.00    1.000

P1
HIGH: 7 34   4.86    0.350
LOW : 7 29   4.14    1.125

P3
HIGH: 11 53   4.82    0.386
LOW : 11 50   4.55    0.782

P6
HIGH: 3 15   5.00   -0.000
LOW : 3 12   4.00    0.816

N1
HIGH: 15 82   5.47    1.087
LOW : 15 64   4.27    0.998

N3
HIGH: 8 46   5.75    0.661
LOW : 8 34   4.25    0.829

N6
HIGH: 7 38   5.43    0.728
LOW : 7 32   4.57    0.495
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Comparison of observation probabilities to the marginal distribution of the codes in
the data

The significant t-tests for some of the early states of the P3 and N3 models are shown in the

following tables and maps.  In general, the observation probabilities in both the high and low

matrices differ substantially from the marginal (background) probabilities in the dataset as a whole.

This is not surprising for the high model, but somewhat surprising for the low model, since about

80% of the weeks in the data are in the low-category.  The fact that the low model also shows a

large number of differences is probably indicative of the fact that these models were selected to

maximize the difference between high and low forecast behaviors, so even the low model picks up

distinctive patterns.

Keep in mind that because the observation probabilities must add to 1.0, disproportionately

high probabilities on some codes must be compensated by disproportionately low probabilities on

some others; furthermore, those probabilities are summed across all of the dyads.  Consequently

while a large positive t-value always means that the behavior is more common than would be

expected by chance, a large negative value can either mean that the behavior is being ignored

completely by the model, or simply that it does not receive emphasis proportional to that of the

high-frequency events (this, for example, is probably what is going on in the series of negative

values for Kosovo in the P3-LOW model, and Bosnia in the N3-LOW model).  (The very large t-

values—those in excess of 10.0, or even in excess of 100.0—are usually associated with codes that

occur only rarely and hence have standard deviations and means close to zero; these are usually

associated with Kosovo.)

Beyond this, several general points are evident from these tables.  First, all of the models,

whether high or low, P or N, disproportionately pick up on WEIS "comment" and "consult" codes

towards Bosnia (and, in some cases, Croatia), and usually from Serbia.  Second, there is a

consistent pattern of the high models having a probability of non-events that is much lower than

expected by chance, where the low models have a non-event probability that is higher than chance

(though usually with t-scores about 2 to 3, whereas the non-event t-scores in the high models are in

the negative tens or hundreds).  This reinforces what is becoming one of the fundamental of event-

data-based early warning: the existence of a report is at least as important as the content of the

report.  Third, and unsurprisingly, violent behavior by Serbia—demonstrations, reduced relations,

expulsions—is important in the high models, but not the low models.
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TABLE 11a.
HIGH CONFLICT PARAMETER T-TESTS AGAINST MARGINALS FOR MODEL P3

State 1

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    ---    ---    ---  -4.238    ---    +++    ---    ---
COMMNT    ---   8.235    ---    +++    ***  12.012  -3.440    ---
CONSLT    ---   7.563    ---    +++   2.009   2.731    ---    +++
APPROV    ---  -4.286    ---    +++    ---  -5.017    ---  -3.614
PROMIS    ---    ---    ---    ---    ---    ---    ---    ---
GRANT    +++    ***    +++    ---    +++    ---    ---    ---
REWARD    ---    ---  -2.993    ---    ---    ---    ---  -3.429
AGREE  -2.598    ***    +++  -2.042    ***  -3.112  -8.630  -5.273
REQEST    ---  -2.792    ---  -2.085  -2.733  -3.798    ---    ---
PROPOS    ---    ---    ---    +++    ---    ---    ---    ---
REJECT    +++    ---    ---    +++    ---    ---    ---    ---
ACCUSE  -9.528    ---    +++  -3.216    +++  -3.624 -540.692 -7.584
PROTST    ---    ---    ---    +++    ---    +++    ---  -3.639
DENY     ---  -5.058    +++    ---    ---  -2.934    ***    ---
DEMAND    ---  -3.096  -2.291    ---    ---    ---    ---    ---
WARN   -2.089    ---    ---    ---    ***  -4.514    ---    ---
THREAT    ---    ---    ---    ---    +++    ---    ---    ---
DEMONS    ---    ---    +++    ---   2.782    ---    ---  -2.246
REDUCE    +++    ---    ---    ---    ***    ---    ---  -2.246
EXPEL    ---   2.311    ---    ---    ***    ---    ---    ---
SEIZE  -8.816  -2.981 -11.002  -2.422    ---  -8.630  -6.423    ---
FORCE    ---    ---    ---    ---    ---    +++    ---  -2.019
NONEVT -41.565

State 2

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    ---    ---    ---    +++    ---    ---    ---    ---
COMMNT    ---   7.904    ---    ---    ---  10.426  -3.245  -2.345
CONSLT    ---   8.000  -2.955    ---    +++    ---  -2.779  -5.296
APPROV    ---    ---    ---    ---    ---  -3.263    ---  -6.024
PROMIS    ---    +++    +++    ---    ***    ---    ---    ***
GRANT    ---    ---    ---    ---    +++    ---  -5.419    ---
REWARD    ---    ---    ***    ---    ---    +++    ---  -3.694
AGREE    ---    ---    ---    ---    ---    ---  -8.745  -4.759
REQEST    ---  -4.392    ***    ***  -2.466  -5.508    ---    ---
PROPOS    ---    ---    ---    ---    ***    +++    ---  -3.079
REJECT    ---  -2.099    ---  -2.302    ---  -2.125    ---  -3.416
ACCUSE  -2.589    ---  -3.751  -6.533  -4.144  -2.394    ---  -5.694
PROTST    ***    ---    +++    ---    ---    ---    ---  -6.014
DENY     ---  -2.279    ---    ---    ---  -2.895    +++    ---
DEMAND    +++  -4.858    +++    ---    ---  -2.903    ---    ---
WARN     ---    ---    ---    ---   2.157    ---    ---    ---
THREAT    ---    ---    ---    ---    ---    ---    ---    ---
DEMONS    ---    ---    ---    ---   2.368    ---    ---  -4.265
REDUCE    ---    +++    ---    +++    +++    ---    ---  -4.265
EXPEL    ---    +++    +++  -3.159    ---    ***    ---    ---
SEIZE    ---  -3.868 -11.873    +++    +++  -5.171    ---  -2.486
FORCE    ---    ---    ***    ---    +++  -3.516    ***  -4.386
NONEVT -41.449
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TABLE 11b.
LOW CONFLICT PARAMETER T-TESTS AGAINST MARGINALS FOR MODEL P3

State 1

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD  -3.021    ---    ---    ---    +++    ---  -2.284  -2.110
COMMNT  -3.305  10.613   2.106    ---  -3.004   9.739    ***  -3.513
CONSLT    ***   9.396    ---    ---    ---    ---    ***  -3.819
APPROV    +++    ---    ---    ---    ---    ---    ---  -2.744
PROMIS  -2.344  -2.992    ---    ---    ***    +++  -3.689  -3.730
GRANT    ---    ---    ---    ---  -4.142    +++  -3.875  -4.072
REWARD    ---  -3.185  -2.208   2.410    ---  -2.269    ---  -2.746
AGREE  -2.804  -2.036    ---    ---    ---  -2.036  -5.106  -7.254
REQEST  -2.395    ---    +++    ---    ***    ---    ---  -3.731
PROPOS  -2.210  -4.489    ***    ---  -2.334  -4.089  -3.875  -3.569
REJECT    ---    ---    ---    +++    ---    ***  -2.918  -2.986
ACCUSE  -2.065    +++   2.044    +++    ***    ---    ---    ---
PROTST  -2.785    ---   2.339    ---    +++   2.194    ---    ---
DENY    2.091    ---    ---    ---  -2.785    ---    ---  -6.134
DEMAND    +++  -2.317    +++    ***    ---    +++  -3.011    ---
WARN     ---    ---  -4.645    ---  -2.154  -2.096    ---    ---
THREAT  -3.787    ---   2.334   2.251    ---    +++    ***  -5.018
DEMONS    +++    ---    +++   2.280    ---    ---  -4.318 -19.038
REDUCE    ***  -3.826    ---  -2.170    ---    ---    ---    ---
EXPEL    ---    ---    ---    ---  -2.245  -2.006    ---    ---
SEIZE  -2.293    ---    ---   2.501  -3.489    ---    ---    ***
FORCE  -8.186  -7.382    ---    +++  -3.163  -4.335    ---  -2.699
NONEVT   2.902

State 2

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD  -2.686    ---    ---    ---    ---    ---    ---    ---
COMMNT  -5.039   4.700    ---    ---    ---   6.708    ---    ---
CONSLT  -3.229   5.660    ---    ***    ---  -3.625    ---    ---
APPROV  -6.613  -4.744    ---  -3.211  -3.862  -2.880    ---    ---
PROMIS    ---    +++  -2.790    ---    ---  -4.696    ---    ---
GRANT  -8.145    +++    +++    +++  -7.440  -4.532    ***  -3.407
REWARD  -3.781    ---  -2.062    ---    ---    ---    ---    ---
AGREE  -2.036  -3.552  -2.022    ---  -2.725  -2.387  -6.433  -2.687
REQEST    ***    ---    ---    ---    ---    ---  -4.067    ---
PROPOS    +++    ---    ---    ---    ---    ---    +++    ---
REJECT  -4.314    ---    ---    ---    ---    ---    ---    ---
ACCUSE  -6.935    ---    ---    ---  -2.818    ---    ---    ---
PROTST  -2.355    ---    ---    +++    ---    ---    ---    ---
DENY     ---  -4.904    ---    ***  -6.368  -2.382    ---    ---
DEMAND  -9.357    ---    ***    ---    ---  -2.876    ---    ---
WARN  -45.513    ---    ---    ---  -3.054    ---    +++    ---
THREAT  -8.092  -5.045    ---    ---  -3.503    +++    ---    ---
DEMONS  -3.597  -3.133    ---    +++    +++  -6.083    ---  -5.202
REDUCE    ---    ---    ---    ---    +++    ---    ---    ---
EXPEL    ---  -2.126    ---    ---  -2.691  -2.326 -43.497    ---
SEIZE -11.142  -2.142    ---    ---  -3.741    ---    ---    ---
FORCE  -2.038  -2.700    ---    ---  -2.911  -2.719    ---    ---
NONEVT   1.993



Schrodt: Forecasting Conflict Page 55

TABLE 11c.
HIGH CONFLICT PARAMETER T-TESTS AGAINST MARGINALS FOR MODEL N3

State 1

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    ---    ---    ---  -2.471    ---    ---    ---    ---
COMMNT    ---   7.624    ---    ---    ***   9.578    *** -33.386
CONSLT    ---   4.392    ---    ---    ---    --- -10.062 -20.709
APPROV    ---    ---    ---    ---    ---  -5.779    ---    ---
PROMIS  -5.755    ---    ---    +++  -2.907    ---    --- -81.591
GRANT    ---    ---    ---    ---   2.504    ---    ---    +++
REWARD    +++    ---    ---  -3.524    ---    +++    --- -98.116
AGREE    ---    ---    ---  -2.325    ---  -2.612 -41.931 -20.400
REQEST    ---    ---    ---    ---  -5.145    ---    ---    ---
PROPOS    ---    ---    ---    ---    ***    ---    --- -68.371
REJECT    ---    ---    ---    ---    ---    ---    ---    ---
ACCUSE    ---    ---  -6.945    ---  -2.089    ---    +++    ---
PROTST    ---    ***    ---    ---    ---    ---    ---    ---
DENY     ---  -7.021  -2.367 -32.017  -2.243  -5.772    ---    ---
DEMAND    ---    ---    +++    ---  -2.795    ---    ---    ---
WARN   -3.000  -6.464    ---    +++    ---    +++    ---    ---
THREAT    ---    ---   2.861    ***    ---    ---    ---    ---
DEMONS    ---  -2.641    ***    ---    +++    ---    --- -147.690
REDUCE    ---    ---    ---    ---    +++    ---    ---    ---
EXPEL    ---    ---    +++    ---    ---    +++    ---    ---
SEIZE    ---    ---  -6.470  -2.171    ---  -3.422  -3.088  -6.566
FORCE    ---    ---    ***    ---    ---  -4.190 -14.170  -5.912
NONEVT -19.223

State 2

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    ---    ---  -2.061  -2.775    ---    ---    ---    ---
COMMNT    ---   6.998    ---    ---    +++   7.518 -81.591 -18.838
CONSLT    ---   6.145    ---    ---    +++    *** -10.333 -10.953
APPROV    ---  -2.859  -2.335    ---    ---  -2.243    ---    ---
PROMIS  -2.125    ---    ---    ***    ---    ---    ---    ---
GRANT    ---    ---    ---    +++    ---    ---    ---    ---
REWARD    +++    ***    ---    ---    ---    +++    ---  -3.828
AGREE    +++    ---    ---  -2.048    ---  -3.019 -14.131    ***
REQEST    ---    ---    +++    ---  -2.579  -3.114    ---  -3.474
PROPOS    ---    ---    ---    ---    ---    ---    ---  -4.552
REJECT    ---    ---    +++    ---    +++    ---    ---  -3.349
ACCUSE    +++    ---  -2.619    +++  -3.834  -2.413 -81.591    ---
PROTST    ---    ---    ---    ---   2.169    ---    ---    ---
DENY     +++  -3.073    ---    ---    ---    ---    ---    ---
DEMAND    ---    ---    ---    ---  -2.445    ---    ---    ---
WARN     ---    ---    ---    +++    ---  -2.001    ---    ---
THREAT    ---    ---    +++    ***    +++    +++    ---    ---
DEMONS  -2.412    ---    ---    ***    ---  -2.100    --- -36.148
REDUCE    +++    ---    ---    ---   2.635    ---    ---    ---
EXPEL    ---    +++    ---    +++    ---    ---    ---    ---
SEIZE    ---  -2.733  -8.688    +++    --- -10.030  -2.066  -4.113
FORCE    ---    ---  -2.062    ---    ---  -2.662  -6.771 -10.227
NONEVT  -8.849
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TABLE 11d.
LOW CONFLICT PARAMETER T-TESTS AGAINST MARGINALS FOR MODEL N3

State 1

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD  -2.319    ***  -2.059    ---    ---    ***    ---    ---
COMMNT    ---   3.921    ---    ***    ---   6.832    ---    ---
CONSLT  -2.326   4.006    ---    ---    ---    ---    ---    ***
APPROV  -2.238    ---    +++  -4.024    +++    ---    ---    ---
PROMIS    ---    +++    ---    ---    ---  -2.332    ---    ---
GRANT    ---  -6.053    ---    ---  -9.946    ---    ---    ---
REWARD -11.594  -8.933    ---    +++  -3.205    ---    ---    ---
AGREE  -4.863  -5.890    ---    ---    ***    --- -52.673    ---
REQEST  -2.734    +++    ---    ---    ---    ---    ---    ---
PROPOS    ---  -4.190    ---    ---  -2.441    ---    ---  -3.804
REJECT    ---    ---    ---    ---   2.043    ***    ---    ---
ACCUSE  -7.449    ---    ---    ---    ---    ---    ---    ---
PROTST  -2.150    ***    ---    ---    ---    +++    ---    +++
DENY  -199.153  -3.634    ---    ---    ***    ---    ---    ---
DEMAND  -7.957    ***    ---    ---    ---    ---    ---    ---
WARN     ---  -4.334    ***    ---    ---  -3.851    ---    ---
THREAT  -4.137    ---    +++    ---    ---    ---    ---    ---
DEMONS  -2.660  -3.320  -2.246    ---    ---    ---    ---    ---
REDUCE    ---  -5.902    ---    ---    +++    ---    ---    ***
EXPEL    ---    ---    ---    ---    ---    ---    ---    ---
SEIZE    +++    ---  -2.795    ---    ---    ***    ---    ---
FORCE  -3.540  -3.230    ***    ---    ---    ---    ---    ---
NONEVT   1.887

State 2

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD  -3.791  -4.067    +++    ---    ---    ---    ---    ---
COMMNT  -4.534   3.671    ---    ---  -4.211   3.509    --- -17.856
CONSLT  -3.198   4.490    +++    ---    ---    ---  -9.154  -8.159
APPROV    ---    ---    ---    ---    ---    ---    ---    ---
PROMIS    ---    +++    ---    ---    ---    ---    ---  -4.416
GRANT  -4.189  -3.838    ---   2.529  -4.810    ---    ---    ---
REWARD  -7.994  -2.711    ---    ---    +++  -4.244    ---    ---
AGREE    ---    ---    ***    ***    ***   2.180    ---  -4.656
REQEST  -3.705  -3.318    ---    ---    +++    --- -131.165 -14.831
PROPOS    ***  -2.498    ---    ---  -7.115  -3.055    ---  -2.085
REJECT    ---  -2.622    ---    ---  -3.241  -3.251    --- -131.165
ACCUSE    ---  -2.413    ***    ***    ---    ---  -4.718    ---
PROTST  -2.601    ---    ---    ---  -5.090    ---    ---    ---
DENY     ---    ---    ---   2.079    ---    +++    ---    ---
DEMAND  -7.780  -3.605    ---    ---    ---    --- -40.279    ---
WARN     ---    +++    ---    ---  -2.512    ---    ---    ---
THREAT    +++    ---    ---   2.043    +++  -2.836    --- -73.328
DEMONS    ---  -5.320    ---    ---    ---    ---    ---    ***
REDUCE    ---  -4.059    ---    ---    ---    ---    ---    ---
EXPEL    ---    ---    ***    ---  -2.226 -32.017    ---    ---
SEIZE    +++    ---    ---    ---    ---    ---    ---    ---
FORCE  -9.893  -6.976    ---    ---    +++    ***    ---  -4.468
NONEVT   0.908
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Figure 13a
DIFFERENCE-OF-MEANS TESTS BETWEEN ESTIMATED AND
MARGINAL PROBABILITIES, 3-MONTH HIGH MODELS STATE 1
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Figure 13b
DIFFERENCE-OF-MEANS TESTS BETWEEN ESTIMATED AND
MARGINAL PROBABILITIES, 3-MONTH LOW MODELS STATE 1
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Differences between the high and low models

T–tests were run for the differences between the high-conflict and low-conflict forecasting

models.  The differences between the observation probabilities in the high and low models

generally show more consistent patterns than the parameter values themselves.  The tables and

maps show the difference of means of the high model minus the low model, so positive values

indicate that the high model is higher.

The most obvious feature of both the tables and the maps is that almost all of the values are

positive.  This is an effect of the much lower number of non-events in the periods preceding a

high-conflict period.  In the N3 model, most of the differences involve Bosnia and Kosovo in the

state 1 model, and in the state 4 model, behavior towards Kosovo—cooperative and

conflictual—dominates.  These strong results on Kosovo are undoubtedly due in part to the small

standard deviations, but emphasis on cooperative events may also reflect attention by the

international community towards Kosovo when tensions in the region heat up.  Serbian reductions

of relations and expulsions are picked up disproportionately in the state 1, but not the state 4,

models, and curiously so are grants and rewards.  In state 4, the high model looks at agreements

across all of the dyads—this probably reflects international attempts to mediate.  Interestingly, the

maps for all models and the best models are almost identical.

The P3 model is quite different (and, in contrast to the N3 model, the all and best models are

different).  This model puts far more emphasis on violent behavior that is coming from Serbia, and

Kosovo is generally ignored in the state 1 model.  The state 4 matrix, in contrast, tends to look

similar to the patterns found in the state 4 matrix of the N3 model, albeit with substantially more

emphasis on Bosnian behavior.

The tables also report t-tests on the differences between the Markov probabilities in the

models.  Here one finds a consistent pattern: in the P-type models the recurrence probabilities are

consistently (and often dramatically) higher in the high model than in the low model; the opposite

is just as consistently true for the N-type models.  In the case of the N-type models, this may

simply reflect the tendency of the low model to have fewer states than the high model, but that also

holds for P-type models, albeit in general the P-type models have fewer states than N-type models.

The statistics in the tables as a whole (including those not presented here) provides some evidence,

in the form of much lower prior transition probabilities, that the P-type high model is generally

moving forward, state by state, whereas the low model simply fluctuates forward and backwards

between several different states.  This would be consistent with the high model showing escalatory

behavior while the low model handles a background of fluctuating behavior.  In the N-type model,

this pattern is reversed: the high model fluctuates, whereas the low model shows de-escalation.
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TABLE 12a.
HIGH .VS. LOW T-TESTS FOR MODEL P3

State 0

Prev_Trans     NaN Same_Trans   3.224 Next_Trans  -3.224

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    +++    ---    ---    ---    ---    ---  -2.562  -3.526
COMMNT   3.122    ---    +++    ***   3.638    ---    +++    ***
CONSLT    ***    ---    ---    ---   2.246   2.350  -3.653  -2.638
APPROV    ---  -2.313    ---    +++    ---  -4.218  -3.161  -2.972
PROMIS    ---    ---    ***    +++    ---  -2.335    +++    +++
GRANT  -2.899  -2.898    ---    +++   3.576    ---    ***    ---
REWARD    ---    ---    ---    +++    ---    ---  -3.552    ***
AGREE    ---    +++  -4.179  -4.162    ***    ***  -2.406  -3.304
REQEST    ---    ---  -2.521  -2.360  -2.498  -3.361    ---    ---
PROPOS  -2.066    ---    +++    +++    ***   3.143    ---  -2.547
REJECT    +++    +++    ---    +++   3.196    ---  -3.148  -2.087
ACCUSE    ---    ---    ---   2.043   3.196    ---    ---    ---
PROTST    ---  -2.677    ---    ---    ***    ---  -4.285  -3.109
DENY     ***  -2.002  -2.421    ---   2.403  -5.277    ---    +++
DEMAND    +++    ---    ***    ---    ---    ---  -2.931  -3.675
WARN     ---    ---    ---    +++   2.294    +++    +++  -2.305
THREAT    ---    ---  -2.040    ---    ---    ***  -2.981  -3.539
DEMONS    ---    ---    ---  -2.462    ---    ---    ---    ---
REDUCE    +++    ---    ---    ---    ---    ---    ---  -2.774
EXPEL   2.063    ---    ---    +++   2.332    ---    ---    ---
SEIZE    ---    ---    +++    ***   2.308    ---    ---    ---
FORCE   3.293    +++    ---    ---   3.176    ---  -3.339  -3.475
NONEVT  -4.815

State 1
Prev_Trans -10.373 Same_Trans   9.481 Next_Trans  -1.410

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    ---    ---    ---  -2.979    ---    ---  -2.515  -3.784
COMMNT    +++    +++  -2.064    +++   2.952    ---    ---    ---
CONSLT    ***    ---    ---    ---    +++   2.532    ---    ---
APPROV    ---  -2.671    ---    +++    ---  -2.594  -2.539    ---
PROMIS    ---    ***    ---    ---    +++    ---    +++    ---
GRANT    ---    ---    ---    ---   2.865    ---    ---   2.149
REWARD    ---    ***    ---  -2.028    ---    +++  -2.807    ---
AGREE    ---    ---    ---    ---    ---    ---    ---    ---
REQEST    ---  -2.028    +++    +++  -3.284  -2.494    ---    ---
PROPOS    +++   2.316    ---    +++    +++    ---    ---    ---
REJECT    +++    ---    ---    ***    ---    ---  -2.030    ---
ACCUSE  -3.522    ---  -2.545  -2.938    ---  -3.033  -3.078  -3.003
PROTST    ---    ---    +++    ---    +++  -2.668  -3.676    +++
DENY     +++  -2.138    ---    ---    +++  -2.404    +++    +++
DEMAND    ---    ---  -2.322    +++    ---    ---  -2.220  -3.282
WARN     ---    ---    ---    ---   2.630    +++    ***  -2.339
THREAT    ***    ---    ***    ---    ---    ---  -3.106  -2.690
DEMONS    ***    ---    ---  -2.154   2.365    ---    ---    +++
REDUCE   2.066    ***    ---    ---    ***    ---    ---    +++
EXPEL    ---   2.188    ---    ---   2.150    +++    ---    ---
SEIZE  -2.717  -2.639  -4.498  -3.393   2.065  -4.378  -2.651    ---
FORCE   4.043   2.737    ---    ---   2.122    ---    ---    ---
NONEVT  -4.185
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TABLE 12b.
HIGH .VS. LOW T-TESTS FOR MODEL N3

State 0

Prev_Trans     NaN Same_Trans  -3.352 Next_Trans   3.352

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    ---    +++    ---    ---   2.253    ---    ***    ---
COMMNT    ---    ---    ---    ---    ---  -2.622    ---    ---
CONSLT    ---    ---    ---    ---    +++    ---    ***  -2.016
APPROV    ---    ---    ---    ---    ---  -2.594    ---  -2.175
PROMIS    ---    ---    ---    ---    ---    +++    ---    ---
GRANT    ---    ---   2.027    ***    ***    ---    ---    ---
REWARD    ---    ---    ---    ---  -2.051    ---    ---  -2.064
AGREE    ---    +++    ---    ---    ---    ---    ---    ---
REQEST    ***    ---    ---    +++    +++    ***    ---  -2.723
PROPOS    ---  -2.259    +++    ---    +++    +++    ---    +++
REJECT    ---    ---    ---    ---    ---    ---    +++  -2.051
ACCUSE    ---    ***    ---    ---   2.193    ---    +++    +++
PROTST    ---    +++    ---    +++    +++    ---    ---    ---
DENY     ***    ---    ---    ---    ---  -3.119    ---    ---
DEMAND    ---    ---    ---    ---    ---    ---    ***    ***
WARN     ---    ---    ---    ---    ---    ---    ---    ---
THREAT    ---    ---    ---    ---    ---    ---    ---    ---
DEMONS    +++  -2.259    ---    ***    ---    ---    ---    ---
REDUCE    ---    ***    ---    ---    ---    ---    ***    +++
EXPEL    ---    ***    ---    ***   3.409    ---    ---    ---
SEIZE    ---    ---    ***    ---    ---    ---    ---    ---
FORCE   2.239    ---    ---    ---    ---    ---    +++  -3.112
NONEVT  -2.402

State 1
Prev_Trans   3.853 Same_Trans  -5.535 Next_Trans   4.039

         BOS>  >BOS    CRO>  >CRO    SER>   >SER    KSV>  >KSV
YIELD    ---    +++    ---    ---    ---    ---    +++    ---
COMMNT    ---    ---    ---    ---    ---    ---    +++    +++
CONSLT    +++    ---    ---    ---    ---    ---    +++    +++
APPROV    +++    ---    +++    ---    ---    +++    ---    +++
PROMIS    +++    +++    ---    ---    ---    ---    ---    +++
GRANT    ---   2.079    ---    ---   4.514    ---    ---    ---
REWARD   3.516   3.680    ---    ---    ***    ---    +++    +++
AGREE    +++    ***    ---    ---    ---    ---    ---    +++
REQEST    +++    ---    ---    ---    +++    ---    ---    +++
PROPOS    ---   2.575    +++    ---   2.623    ---    ---    +++
REJECT    ---    ---    ---    +++    ---    ***    ---    ---
ACCUSE   2.450    ---  -2.098    ---    ---    ---    ---    +++
PROTST    ---    ---    +++    ---    +++    ---    ***    +++
DENY     +++    ---    ---    ---    ---    ***    ---    ---
DEMAND   2.157    ---    ---    ---    ---    ---    ---    +++
WARN     ---    ---    ---    ---    ---    ---    ---    ---
THREAT    +++    ---    ---    ---    ---    +++    ---    ---
DEMONS    ---    ---   2.420    +++    ---    ---    ---    +++
REDUCE    ---   2.646    ---    ---    ***    ---    ---    ---
EXPEL    ---    ---    ---    ---    ---    +++    ---    ---
SEIZE    ---    ---    +++    +++    ---    ---    +++    +++
FORCE   2.441    +++    ---    ---    ---    ---  -2.487    +++
NONEVT  -2.083
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Figure 14a
DIFFERENCE-OF-MEANS TESTS BETWEEN
HIGH AND LOW MODELS, P3 MODEL STATE 1
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Figure 14b.
DIFFERENCE-OF-MEANS TESTS BETWEEN
HIGH AND LOW MODELS, N3 MODEL STATE 1
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Figure 14c.
DIFFERENCE-OF-MEANS TESTS BETWEEN HIGH AND LOW
MODELS, P3 MODEL STATE 4
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Figure 14d. DIFFERENCE-OF-MEANS TESTS BETWEEN HIGH AND
LOW MODELS, N3 MODEL STATE 4
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Comparison of 1-month and 6-month forecast models

T–tests were run for the difference between the 1-month and 6-month forecasting models.

There appear to be few if any systematic differences—in fact in comparisons of the later states, the

number of significant t-values barely rises above the level expected by chance.  This result is

particularly strong in the low model estimates in .best  models, which would suggest that the most

effective low models are simply modeling the background activity in non-conflict periods, with

appropriate adjustment to maximize the distinctions between this and the high-conflict periods.

In the high models, there is a consistent pattern is that there are more differences in the early

states of the models.  This would suggest that more of the discrimination may be found in the early

states, which is also consistent with how the HMM models themselves work: The best fit for a

sequence might involve simply cycling in the early states of the model, which should result in more

precise estimation of those states.  This is also consistent with the interpretation that these forecasts

are dealing with general shifts in behavior (which involve relatively diffuse changes in the event

sequences) rather than a more finely-differentiated development of a six-stage crisis that would

involve a larger number of distinct Markov states.

Three Experiments in Simplifying the Model

As the discussion above makes clear, one major drawback of the HMM approach is the large

number of parameters.  Because these parameters do not appear to exhibit any obvious

structure—widely different values produce roughly comparable results—it seems likely that many

of them are redundant.  I therefore undertook two experiments to test the effects on accuracy of

substantially reducing the number of parameters, first by looking only at the activity of the

dominant actor in the system—Serbia—and then by reducing the detail in the event codes.  I also

looked at the effects of changing the classification variable from predicting conflict in a single

week to predicting conflict in a 1- or 2-month period.

Reducing the Number of Dyads: Serbia Only

Serbia is clearly the dominant actor in this crisis.  During the 1990s, conflict in the former

Yugoslavia shifted focus from Croatia to Bosnia to Kosovo, but Serbia (and ethnic Serbs) were

involved at all of these stages.  This suggested an alternative approach: just monitor the activity of

Serbia.  Consequently I re-estimated a simpler model that involves only 45 codes:

[any source] -> Serbia Serbia -> [any target]

plus the 00 nonevent code. The remainder of the forecasting design was the same as before.
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The focus on Serbia was also suggested by the fact that the model did not do very well at all on

predicting the outbreak of violence in Kosovo. This could be due to the fact that while the original

model included events involving Kosovo, there was in fact no real precedent for violence in

Kosovo, and the reason that the model did not predict problems in Kosovo might have been due to

it "looking" for the wrong thing.

Tables 3 and 4 show the summary statistics on the accuracy of the simplified model.  In terms

of overall accuracy, the results for the U and P models are almost identical to the results in the 4-

dyad model, and the N model actually improves by about 10%!  (The improvement in the N model

is due largely to increased accuracy during the implementation of the Dayton accords).  These

results are also mirrored in the analysis of the high and low-week errors in Table 4:  The U and P

models gain between 5% and 20% observed accuracy in the high conflict week, while losing only

about 2% observed accuracy in low-conflict weeks.  The forecast accuracy of the U and P models

remains about the same.  In the N model, the observed accuracy for high-conflict weeks increases

slightly (about 5% for the 3 and 6 month forecasts), and increases about 10% for low-conflict

weeks.  Forecast accuracy increases about 7% for high-conflict weeks and stays the same for low-

conflict weeks.  In almost none of these cases is there a serious loss of accuracy when moving to

the simpler model.18

Figure 7 shows the 5-week centered moving average of the 3-N and 3-P Serbia-only models;

in general these show patterns (including mirror-imaging) that are similar to those found in the 4-

dyad models.  However, the direct comparison between the Serbia-only and 4-dyad 3-N

models—shown in Figure 8—reveals several interesting differences.  First, as I had hoped, the

Serbia-only model is much quicker at picking up the cessation of hostilities following the Dayton

Accords—the two lines parallel each other during the period from July-1991 to October-1997,

with the Serbia-only model being about 30% more accurate.  Second, there are two deep spikes of

low accuracy in the Serbia-only model that are not found in the 4-dyad model: these occur in late

1991 and late 1998.  In both cases, the inaccuracy is due to false-positives: the model is saying

there will be conflict, but it is not reflected in the data.  Both of these periods are followed by major

outbreaks of violence.

This analysis suggests that this simple Serbia-only model may be more accurate than the more

complex 4-dyad model, despite the fact that the earlier model contains much more information.

There are at least three reasons that this might be true.  First, simple models of social behavior are

often more accurate, because the measurement errors in an more complex model add more signal

                                                

18 The Serbia-only model also shows a greater likelihood of consistently being less accurate at longer horizons,
which would be consistent with that model having reduced amounts of noise.
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than noise.19  (This parallels the experience of the State Failures Project, which started by looking

at several hundred variables, and found that all they really needed were half a dozen.)  Second,

"watch the bad guys" is intuitively plausible—Serbia has been the initiator of much of the violence

in this region, and when not the initiator, usually the target, so monitoring Serbia alone is going to

get most of the required information.  Such an approach might not work in an area characterized

by a truly multi-actor conflict such as central Africa, or the Afghan or Lebanese civil wars.  Finally,

the underlying theory of sequence matching suggests that models should not be overly

specific—the whole point of the exercise is to generalize.  In this case, the generalization is across

all Serbian behavior, irrespective of target.

Table 3
Summary of Estimated Models: Serbia Only

Best Models All Models

Model # Models # Obsrv % Correct # Models # Obsrv %Correct

1-U 8 3256 80.1% 32 13024 76.9%

3-U 7 2786 81.5% 32 12736 76.3%

6-U 2 770 79.9% 32 12320 74.4%

1-P 7 2849 81.1% 32 13024 76.8%

3-P 6 2388 81.2% 32 12736 76.3%

6-P 2 770 79.9% 32 12320 75.0%

1-N 31 12617 64.1% 32 13024 63.6%

3-N 30 11940 59.7% 32 12736 58.9%

6-N 32 12320 60.2% 32 12320 60.2%

                                                

19 In the case of event data, coverage bias is probably the most important source of error: reporters go to where the
action is, and when the action is in Sarajevo, few reports will come out of Kosovo.
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Table 4a
High Conflict Weeks: Serbia Only

Best Models All Models

Model Observed Forecast Observed Forecast

1-U 38.7% 51.5% 43.1% 43.3%

3-U 40.3% 58.1% 49.7% 43.9%

6-U 35.5% 55.1% 43.5% 41.1%

1-P 37.9% 55.3% 44.5% 43.3%

3-P 38.8% 57.4% 46.9% 43.7%

6-P 33.1% 55.6% 42.8% 42.1%

1-N 92.8% 35.5% 93.0% 35.2%

3-N 91.3% 33.1% 91.7% 32.7%

6-N 90.6% 34.1% 90.6% 34.1%

Table 4b
Low Conflict Weeks: Serbia Only

Best Models All Models

Model Observed Forecast Observed Forecast

1-U 90.6% 85.3% 85.5% 85.4%

3-U 92.3% 85.4% 83.3% 86.3%

6-U 92.1% 83.9% 82.9% 84.2%

1-P 92.2% 85.3% 85.0% 85.7%

3-P 92.4% 85.1% 84.1% 85.7%

6-P 92.7% 83.5% 83.8% 84.2%

1-N 56.8% 96.9% 56.1% 96.9%

3-N 51.3% 95.7% 50.2% 95.8%

6-N 51.8% 95.3% 51.8% 95.3%
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Figure 7.

Accuracy of Serbia-only, 5-week Moving Average
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Figure 8.

Modifying the and Coding Scheme

A second experiment involves simplifying the coding system. Earlier work on conflict in the

Middle East (Gerner and Schrodt 1998) showed that in a cluster analysis, it was possible to

substantially reduce the number of coding categories substantially without much loss in predictive

power (in fact predictive power might even be gained by eliminating sources of noise).  I therefore

re-estimated the models using the following five-category system:

0. Non-event

1. Verbal cooperation (WEIS categories 02, 03, 04, 05, 08, 09,10)

2. Material cooperation (WEIS categories 01, 06, 07)

3. Verbal conflict (WEIS categories 11, 12, 13, 14, 15, 16, 17)

4. Material conflict (WEIS categories 18, 19, 20, 21, 22)
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This reduces the total number of codes in the 8-dyad Balkans model from 177 to 33, which also

substantially reduces the number of low frequency code categories.  (This is also likely to reduce

the effect of coding variance and coding error somewhat:  Several of the “verbal conflict” codes in

WEIS are ambiguous even for human coders, and the automated coding probably generates some

misclassification in those categories.)

The results of this experiment are given in Table 13a.  As before, the models were evaluated

with 1, 3 and 6-month forecast lags, and with the P and N weighting scheme. 32 Monte-Carlo

genetic algorithm estimates were done for each set of experimental parameters.  For purposes of

comparison, Table 13b presents the statistics for the original model in the same format.

In general, the results of the new analysis are comparable to those of the original analysis.  As

before, the drop-off in accuracy with the increasing forecasting lag is small—about 4% from the 1-

month to 6-month forecast lag—but consistently there is a small decrease.  The overall accuracy

measure decreases about 4% for the P models and increases about 8% for the N models.  The

largest difference in the results occurs with respect to the accuracy of the high-conflict predictions

in the P models—these average about 18% better in the percentage of the observed high weeks that

were correctly forecast, albeit at the cost of an 8% decrease in the corresponding percentage of the

observed low weeks that were correctly forecast.  The N model shows an 11% increase in the

percentage of the observed low weeks that were correctly forecast and a 5% increase in the

percentage of forecasts of high conflict that actually had high conflict.  All of the remaining

statistics differ from the original model by less than 3%.

This analysis clearly supports the results found in Gerner and Schrodt (1998)—the use of

simplified event coding systems at worst involves only a small penalty in terms of predictive

accuracy, and at best can actually improve the accuracy, probably through the reduction of noise.

This is particularly important when automated coding is being used, since automated coding is

generally less capable of making subtle distinctions between event categories, but generally is quite

good at making large distinctions such as the difference between cooperative and conflictual

behavior.20

                                                

20  It should be noted that both this test and the earlier Gerner and Schrodt (1998) test use machine-coded data, so
this effect might be due to the errors found in that type of coding.  However, this seems somewhat unlikely
given the magnitude of the effect, the fact that the overall error rate in machine coding is comparable to that of
human coding, and the fact that many of the categories that are ambigous in machine coding are also ambiguous
to human coders.
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Table 13a. Accuracy for 5-Category Coding System

Experiment %accuracy %high
correct

%low
 correct

%high
forecast

%low
forecast

P1 74.4 46.2 81.5 38.9 85.6

P3 71.7 44.1 78.9 35.4 84.4

P6 71.4 44.2 78.8 36.4 83.8

N1 61.9 90.7 54.6 33.7 95.8

N3 57.8 87.0 50.2 31.4 93.6

N6 56.8 85.9 48.8 31.5 92.7

Table 13b. Accuracy for 1-Week Prediction Periods and 23-Category Coding

System

Experiment %accuracy %high
correct

%low
correct

%high
forecast

%low
forecast

P1 77.6 29.3 89.5 40.8 83.7

P3 76.0 29.0 87.9 37.9 82.9

P6 76.9 25.9 90.6 42.6 82.0

N1 54.2 92.7 45.3 28.1 96.4

N3 49.0 88.1 39.6 25.9 93.3

N6 47.7 88.5 37.4 26.3 92.8

Modifying the Prediction Framework

The final experiment involves modifying the criteria for making a prediction. As noted at a

number of points above, the objective of predicting the level of conflict in a single week is

unrealistically precise—most predictions by human political analysts are made over more general

periods of time.  Consequently, the classification variable was modified to indicate whether a high-

conflict week occurred during a 4- or 8-week period following the forecasting-lag period.  The

threshold for high-conflict was set at greater than 26 WEIS category 22 events for the 4-week
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period and greater than 57 WEIS category 22 events for the 8-week period; approximately 30% of

the periods fall into the high-conflict category.

These results are reported in Table 14, the 4 and 8 prefixes in the “Experiment” code refer to

conflict occurring in 4- and 8-week periods respectively.  These runs were done with the 5-code,

rather than the earlier 22-code, system; and there were 32 Monte Carlo experiments for each

experimental condition.

Surprisingly, the overall accuracy changes very little from the results of the 5-code experiment

reported in Table 13a; almost all of the accuracy percentages are within 3% of the earlier results.

However, there are substantial changes in the pattern of the accuracy.  As with the change in the 5-

code system, this change benefits the accuracy of the forecasts of the high-conflict months.  In the

P model, the number of high conflict periods correctly predicted increases by about 13% for the 1-

month and 3-month forecast lags, and the percentage of high conflict periods where high conflict is

actually observed also increases by about 13%.  In the N model, the percentage of high conflict

periods where high conflict is actually observed also increases by about 10%, but there is almost

no change in the the number of high conflict periods correctly predicted.  Because the overall

accuracy changes little, these increases in accuracy for the high-conflict periods are compensated

by decreases in accuracy for the low-conflict periods, though those percentage changes are

smaller—typically around 4%—because the number of low-conflict periods is larger.

These results were somewhat unexpected: I had expected that predictions for the longer

periods would be more accurate because they would not be subject to errors due to the random

week-to-week variations within a period of high conflict.  In a sense, this is what occurs in the

higher prediction accuracy for high-conflict periods.  However, that has relatively little impact on

the overall accuracy, which is dominated by the low-conflict periods and low-conflict is highly

autocorrelated.  The results are consistent with the model is picking up very general characteristics

of the behavior that change only slowly over time, rather than looking at indicators for specific

weeks, despite that choice of the classification variable; this will be discussed in greater detail

below.
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Table 14. Accuracy for 4- and 8-Week Prediction Periods and 5-Category Coding

System

Experiment %accuracy %high
correct

%low
correct

%high
forecast

%low
 forecast

4P1 70.7 59.6 75.5 51.2 81.3

4P3 69.1 55.0 75.4 49.9 79.1

4P6 67.1 47.3 75.6 45.4 77.1

8P1 72.8 59.4 78.2 52.3 82.8

8P3 69.6 58.9 74.0 48.4 81.3

8P6 69.7 51.6 77.5 49.2 79.1

4N1 62.1 89.2 50.4 43.7 91.6

4N3 56.8 87.4 43.2 40.6 88.6

4N6 55.3 85.4 42.5 38.9 87.2

8N1 64.9 89.6 55.0 44.5 93.0

8N3 59.1 86.9 47.6 40.7 89.8

8N6 58.5 86.3 46.8 40.7 89.0

Conclusion

The overall conclusion of this analysis is that hidden Markov models are a robust, though

hardly flawless, method for forecasting political conflict, at least when applied to area such as the

former Yugoslavia where substantial information about political events is available.  From the

standpoint of pure prediction, the models are credible.

Unfortunately, these models are less useful from the standpoint of inference; in particular, it is

very difficult to figure out what information the HMM is using to make these prediction. At

various points in the discussion above, I have noted some clear—and generally plausible—patterns

in the estimated probabilities.  However, in general it has proven quite difficult to make much sense

out of these.  This is not to say that this exercise has been useless—without looking for patterns,

there was no way to know they were not present—but a series of experiments trying to find

patterns in these coefficients has not produced any obvious results.
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There are a couple of likely reasons for this.  First, these forecasting models have relatively

long time horizons.  The common-sense signs of short-term escalatory behavior such as demands,

threats and small-scale incidents of violence will not necessarily be found at three and six month

horizons or, in this data, even at one month.  (One sees a little bit of this, for example in behaviors

coming from Serbia, or towards Bosnia and Kosovo, but not a lot).

What the models seem to be picking up instead are relatively diffuse indicators, and often as

not, simply increased attention to the area by the international media (as well as the international

community.  For example, one would expect that if a NATO commander or UN representative

called attention to some issue, Reuters would almost always report it, whereas if the mayor of a

village made the same comment, this might be ignored.  Some of these indicators may be indirect:

For example I initially viewed the emphasis in the high-conflict models on Kosovo to be a

statistical artifact, but this could also be reflecting that fact that after 1991 or so, the international

community consistently responded to aggressive moves by Serbia by warning Serbia not to do

anything in Kosovo, and these activities are probably picked up in the data set.  The presence or

absence of non-events is clearly very important, a result that was expected—the fact that the

international media are reporting on an area is by itself a useful indicator.

The interpretation of the coefficients is further complicated by the fact that we are dealing with

probabilities—which by definition sum to 1.0—so an increase in one probability necessarily leads

to a decrease in another.  Add to this the propensity of interactions in event data to be symmetrical,

and the fact that the codes are aggregated not only within the four actors in the Balkans, but also

interactions between those actors and the international system as a whole, and the determination of

the parameters gets very complex.  In particular, it is quite different from the more familiar task of

interpreting regression coefficients, which (in the absence of significant collinearity) are more or

less independent of each other in value.

This is further complicated by the problem of the indeterminancy of the estimates produced by

the Baum-Welch algorithm.  This indeterminancy does not seem to be dealt with in detail in the

HMM literature—most HMM applications are solely concerned with prediction, not

inference—but where it is mentioned, the experience that I have had estimating these models

appears to be typical.  I have done a series of additional unreported experiments to attempt to find

ways to reduce the variance of the estimates—increasing the number of templates used, varying the

parameters of the genetic algorithm, changing the convergence conditions of the Baum-Welch

algorithm, and setting the initial observation probabilities in the vicinity of the marginal

probabilities of events in the data set as a whole—and none of these had a major impact.  There is

some limited evidence that the variance in the accuracy of the models estimated with the 5-code

system is less than that of the 22-code system, but the variance in the parameters is still quite high.
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Finally, the sheer number of parameter estimates generated by these HMMs complicates the

problem of interpretation. The HMM models may be similar to neural networks in this regard: the

diffuse coefficient structure is the model's way of dealing with the high degree of uncertainty in the

underlying data, and the complexity of tradeoffs between the parameter values makes them almost

impossible to interpret in a simple fashion.  Doing a full interpretation would ideally involve five

dimensions of comparison—WEIS category, dyad, Markov state, weighting scheme and high/low

model—which is three dimensions more than most people can deal with.  I've focused here on two

weights, one or two Markov states, and a two-dimensional actor-by-code comparison, but that

obviously leaves plenty of other possibilities that have not been explored.
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