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1 Introduction

In recent years, political forecasting has become a more common exercise. These forecasts

range from predictions of election outcomes (Campbell 2000, 2010a) to forecasts of political insta-

bility (O’Brien 2010, Goldstone, et al. 2010). They are intended to aid campaign managers, political

observers, policy makers. The analysts who produce them often compare, either implicitly or ex-

plicitly, the performance of their forecasting models to that of competing models. If the model is

successful, they declare it the winner, as if their horse had beaten its competitors in a race.1

Meanwhile, scholars in disciplines as diverse as statistics, meteorology and finance are con-

ducting formal forecasting competitions. Their works illuminate important methodological chal-

lenges such as striking a balance between judgmental and model-based forecasts and choosing

between nonstructural and structural (theory laden) functional forms. These forecasters address

important design issues as well: measuring initial conditions and coping with data vintaging, us-

ing in-sample and out-of-sample data (recursively) in evaluations, and deciding whether and how

to make forecasts across breakpoints. Their exercises use a combination of scoring rules and other

tools—tools that include interval, density, and spatial evaluations of forecasts—and have shown

that a suite of methods is needed to determine which forecasting model is the best performer.

Table 1 summarizes some of these features of meteorological and macroeconomic forecasting in

relation to two kinds of forecasts that are increasingly common in political science.2

Unfortunately, the horse races found in political science are less rigorous than those conducted

in many other disciplines. We generally ignore critical modeling and design issues. Some leading

forecasters in international relations forecasters produce prediction that are “off on time.” That is,

the predictions do not indicate when an event will occur nor how much uncertainty is associated

with the prediction (see Brandt, et al. 2010). In general, political science also uses an antiquated

set of tools to evaluate our point forecasts, typically Mean Absolute Error (MAE) and Root Mean

Squared Error (RMSE). Such point forecasts contain no information about estimation and other

kinds of uncertainty (Tsay and Wallace 2000: 235). Also, metrics like RMSE fail the reliability

criterion (Armstrong and Collopy 1992).

Consider the Political Instability Task Force’s (PITF) claim to outperform a model based on

Fearon and Laitin’s (2003) theory of civil war. Goldstone, et al. (2010) report that its model yields

a higher percentage of correct predictions. But how precise is this percentage? What are the con-

fidence intervals for the PITF and Fearon-Laitin predictions? Is there substantial overlap among

1Campbell (2000) argues that forecasting contributes to political science; Schrodt (2010), basing his arguments
on the logical positivists Hempel and Quine, goes further to assert that unless validated by prediction, models, even
those lovingly structured with elaborate formalisms and references to wizened authorities, are merely “pre-scientific.”

2The interest (advances in) risk management in the 1990s resulted in finance adopting many of the tools used in
meteorology. To keep things more simple in Table 1, we stress the contrasts between meteorological, macroeconomic,
and political forecasting. A short but useful history of macroeconomic forecasting can be found in Clements and
Hendry (1995: Section 1.3) These authors also produce a typology of 216 cases of macroeconomic forecasts, cases
distinguished by such things as whether the forecasting model is or is not claimed to represent the data generating
process and whether linearity is or is not assumed.
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these confidence intervals? If yes, how do we incorporate this overlap in our evaluation of the two

models? What forecast densities are associated with each model and how do we include an evalu-

ation of these densities in this horse race? The answers to these questions are important because

Diebold et al. (1998) show that if we can find the correct density for the data generating process,

all forecast users (for example policy makers) will prefer to use it regardless of their loss functions.

In general, political scientists have not incorporated, in any systematic way, judgmental ap-

proaches to constructing forecasting models or to modeling important break points (nonlinear-

ities) in political processes. Our forecasting competitions are poorly designed, with ambiguous

or ad hoc guidelines for the choice of training sets, forecast benchmarks, and other design ele-

ments. In addition, forecasters in political science have generally ignored the probabilistic nature

of the forecasts inherent in estimation and evaluation. This is why the southeast corner of Table

1 is blank: the appropriate tools, to our knowledge, have not been applied in our discipline. As

we will demonstrate, because of these shortcomings, we often draw the wrong inferences about

model performance. We often declare the wrong horse victorious.

This paper shows how to improve forecasting in political science. It is divided into five parts.

The next three sections review the issues involved in (2) building a sound forecasting model, (3),

comparing forecasts, and (4), actually judging model performance. Section 4 will also discuss

the value of a new suite of evaluative tools. The tools include the Continuous Rank Probability

Score, Verification Rank Histogram and Sharpness Diagram. Forecasts in international relations

(political instability and conflict early warning) are critically evaluated throughout sections 2, 3

and 4.3

Section 5 of the paper illustrates how to use the new suite of designs and tools to improve

competitions between forecasting models, first in a stylized Monte Carlo analysis and then in a

horse race between conflict early warning models for the China-Taiwan “Cross-Straits” dyad. The

Monte Carlo analyses highlight the pitfalls of relying on point forecasts and conventional metrics

like RMSE to pick winners. The conflict early warning investigation compares the performance

of a collection of time series models including univariate autoregressions (AR) and multiequation

models including Bayesian, and Markov-Switching Bayesian vector autoregressive models (VAR,

BVAR, MS-BVAR models, respectively).

In Section 6 of the paper, our conclusion, we summarize our results and lay the groundwork for

the sequel to this paper, a review of how best to pool models to enhance forecasting (Montgomery

and Nylan 2010; Montgomery, et al. 2011; Geweke and Amisano 2011).

3In the longer version of this paper, available from the authors, we also critically evaluate the election forecasting
literature at the end of parts 2, 3, and 4.
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Meteorology Macro- Conflict
[Finance] Economic Election Early Warning

2. FORECAST
CONSTRUCTION Federal Reserve Cook’s Political

Judgmental vs. Elicita- Green Book Report vs Seats-In- The Call/ICG vs.
Model-based tion vs. BVAR Trouble Model PITF

(Non)structural (B)VARvs.NNS, Seats In Trouble vs. PITF vs.Fearon-
functional form DSGE Models Referendum Models Laitin Models

Model training Variability Prior Stan-
Tradeoff dardzation

3. DESIGNING
MODEL RACES

Measurement- Initial/Boundary Data Data
ment Conditions Vintaging Vintaging

In-vs.Out-of Sequential Updating; One Election Sequential
Sample Fixed-Event Design Ahead Ex Ante Ex Post

(Public Domain)

Breakpoints Weather Regimes, Business Realignments Conflict
RST Models Cycles Phase Shifts

Benchmark Metrics/ Climatological Thiel’s U2 Thiel’s U2
Naive Models NMSE

4. EVALUATION
Evaluation RMSE,MAE MAE,RMSE RMSE ROC

Metrics(Point) MAE Curves

Interval Scoring Fan Charts none none
Rules LRcc

Density VRHs,CRPS LPSs,PITs none none
PITs

Spatial MST none none none

Table 1: Selected Features of Forecasting Competitions in Three Disciplines. Numbers of major
topics correspond to section in which they are discussed. Notes. Seats In Trouble and Referendum
Models are the forecasting models proposed by Campbell (2010) and by Lewis-Beck and Tien
(2010), respectively. ICG, PITF, (B)VAR, NNS, DSGE, RST, CRPS, RMSE, NMSE, MAE, LRcc,
VRH, LPS, PIT, and MST denote International Crisis Group, Political Instability Task Force,
(Bayesian) Vector Autoregression, New Neoclassical Synthesis Models, Dynamic Stochastic General
Equilibrium Models, Regime-switching space-time method, Continuous Rank Probability Score,
Root Mean Square Error, Normalized Mean Square Error, Mean Absolute Error, Likelihood Ratio
Test for joint Coverage and Independence of Interval Forecasts, Verification Rank Histogram, Log
Predictive Score, Probability Integral Transform, and Minimum Spanning Tree Rank Histogram,
respectively.
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2 Raising and Training Horses: Constructing Forecasts

2.1 Judgmental vs. Model-based Forecasts

Judgmental forecasts are expert opinions collected by elicitation and surveys. These opinions

often are aggregated by various rules like Bayesian updating and mechanisms such as prediction

markets.4 The now vast literature on elicitation shows that many humans are not good forecasters.

Humans tend, for example, to have difficultly supplying variances for their subjective probability

distributions. Humans also have incentives to “hedge” or not report their true estimates of the

probabilities of events. Aggregation is nonetheless assumed to reflect the collective wisdom and

thus provide more accuracy in forecasting than do individual forecasts. Thus, for example, for

many years, meteorologists worked to devise elicitation schemes for generating weather forecasts

(Murphy and Winkler 1974; Garthwaite et al. 2005). Surveys of economists’ predictions of infla-

tion and other macroeconomic aggregates are regularly published in such works as the Federal

Reserve’s Green Book and the Survey of Professional Forecasters (SPF).5

In meteorology a distinction is drawn between model-based and climatological forecasts. Model-

based forecasts are based on reductionist models—first principles of behavior—from physics and

other natural sciences. They are often solved numerically for particular initial conditions and

boundary conditions supplied by the forecaster. An ensemble model-based prediction system is

a collection of initial conditions and boundary conditions supplied by different weather centers

for simulation with one model. An example of such a model used in weather forecasting is the

Fifth Generation Penn State/National Center for Atmospheric Research Mesoscale Model, MM5.

Climatological forecasts are based observed frequencies of weather over selected periods of time.

They sometimes are called reference forecasts (Gneiting and Raftery 2007: 362).

In the social sciences, a key distinction is between nonstructural and structural models. Specif-

ically, some models are considered tools for forecasting a data generating process (DGP) whereas

others are meant to be theoretical representations of that DGP. This distinction figures prominently

in macroeconomics (Clements and Hendry 1995). Macroeconomists often run horse races be-

tween collections of models of each type, for instance, between nonstructural models like unre-

stricted vector autoregressions (UVARs) and Bayesian vector autoregressions (BVARs) and struc-

tural models of the New Neoclassical Synthesis (NNS) and Dynamic Stochastic General Equilib-

rium (DSGE) types. The latter types of models presumably provide stronger “microfoundations”

for macroeconomic forecasts (Smets and Wouters 2007). Judgment-based forecasts may be in-

4For a recent review of the literature on elicitation with reference to applications in the study of political networks
see Freeman and Gill (2010). Important references in this literature include Garthwaite et al. (2005), Chaloner and
Duncan (1993), and Tetlock (2006). A useful review of prediction markets is Wolfers and Zitzewitz (2004). One of
the classic defenses of aggregation is Surowieki’s (2004) book, The Wisdom of Crowds. Work on the Condorcet Jury
Theorem is also relevant (e.g., Austin Smith and Banks (1996)).

5The Greenbook is a single forecast produced by the staff of the Board of Governors of the Federal Reserve System
in Washington D.C. The SPF is a quarterly survey of 30-50 professional forecasters. It is administered by the Federal
Reserve Bank of Philadelphia (Wieland and Wolters 2010: fn. 3). For a brief description of similar surveys see Ibid.
fn. 8. Fildes (1995) is a review of the judgment “industry” in macroeconomics.
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cluded in such comparisons. Wieland and Wolters (2010) found that judgment-based forecasts

from surveys of economists performed better in the short-term than model based forecasts pre-

sumably because experts were better able to take into account high frequency data.

Both these distinctions are too strong. In fact, BVARs explicitly incorporate judgment in mod-

eling, for example through the use of informed priors such as those developed at the Minnesota

Federal Reserve Bank in the 1980s. Second, nonstructural models are still theoretically informed,

and they often are interpreted as the reduced form of an unknown structural model. For these

reasons, the lines between judgment-based and model-based forecasts and between nonstructural

and structural models are less clear than is often portrayed in the literature.6

Meteorological and macroeconomic forecasters are sensitive to the fact that both human and

atmospheric systems display discontinuities. These require models that account for nonstation-

arity and also, as we explain the next section, for the determination of break points of various

kinds. In meteorological forecasting, the nonstationarity is in the error fields of models (Berrocal,

et al. 2007: 1391, 1400). Provision is made for changes in weather regimes due to such things as

pressure differences over sea and land as well as topography. Gneiting et al. (2006)’s forecasts of

wind speed at an energy center on the the Washington-Oregon state line use a regime-switching

space-time (RST) technique, a technique that has different models for westerly and easterly flows

along the Columbia River Gorge.7

In the case of the macroeconomic models, forecasters take into account the facts that economic

processes may be long memoried (and cointegrated) and agents may reoptimize their behaviors

under certain conditions. As a consequence markets may exhibit cycles and jumps. Forecasting

models must allow for these possibilities.8

2.2 Model Training

Just as one trains horses to compete in races, one must train experts and models. Scholars

who work with elicitation techniques devote much effort to training experts how to produce their

subjective probability distributions. This can involve pencil and paper exercises or visual exer-

cises using probability wheels or computer graphics.9 For modelers, “training” amounts to the

6See, for example, Sims writings on the value of nonstructural macroeconomic models (1986, 2005). Important
citations on BVAR include Doan et al. (1980), Litterman (1986), Sims and Zha (1998); see also Robertson and
Tallman (1999). For a discussion of idea of VARs as reduced form applied to political science see Freeman et al.
(1989). A still deeper distinction here is between predictability and forecastability (Clements and Hendry 1995:
Chapter 2.). The former has to do with the relationship between a variable and an information set—the density of
the variable depends on the information set. The latter depends on our knowledge of how to use the information
set to make a successful prediction, more specifically the structure of the DGP. Predictability is a necessary but not
sufficient condition for the ability to forecast.

7Gneiting, et al. (2006) do not model the switching. Rather they determine the direction of the wind from a
reading at a nearby weather station. See ibid. for citations to additional meteorological methods and models that
allow for weather regime switching.

8The need to account for nonstationarity in economic processes is a major theme of Clements and Hendry 1995.
9Freeman and Gill (2010) review these training schemes and then propose and test a computer based, visual

elicitation tool for supplying missing data in social networks. See also Kadane and Wolfson 1998, O’Hagan 1998, and
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Figure 1: Training Analysis for Short-Range Temperature Forecasting. Source: Raftery, et al.
2005: 1164-1165. RMSE, MAE, and CRPS are defined as in Table 1. BMA denotes Bayesian
Model Averaging. The Ignorance Score is the average of the negative natural logarithms of the
BMA probability density functions evaluated at the observations.

choice of a sample of data (time span) within which to estimate one’s parameters before attempt-

ing to forecast ex post or ex ante. The challenge is to choose a training period that is sufficient

to capture recent changes in the model variables and perhaps seasonal effects but not so long as

to undermine the variability of the forecast (Berrocal, et al. 2007; Gneiting, et al. 2006: 974-5.).

In BVAR macroeconomic models, the training period is designed to achieve standarization of the

(informed) prior (see Smets and Wouters 2007: 595).10

Figure 1 is an illustration from Raftery, et al.’s (2005) effort to forecast short-range temperature

in the Pacific Northwest. Some of the evaluative criteria on the vertical axes of the plots are ex-

plained below. But note, for now, that by the familiar RMSE and MAE measures, the performance

of the model improves as the training period lengthens, but the width of the two prediction inter-

vals widens. In meteorology the choice of the training period is considered part of the modeling

enterprise. Scoring rules and other tools are used to choose the period in which the model is

trained in order to strike a balance between fitting to recent events and variability.

Chaloner, et al. 1993.
10Berrocal, et al. (2007) point out in weather forecasting, , it sometimes is useful to use a slice of data from a

previous season to help train the model in order to capture seasonal effects. Smets and Wouters cite an unpublished
paper by Sims to justify using a training set to standardize a prior.
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2.3 Constructing Forecasts in International Relations

There is plenty of punditry in international relations. Expert predictions of intra- and interna-

tional conflict are offered regularly by many nongovernmental organizations such as The Call and

The International Crisis Group. Few examples of systematic elicitation exist, but model based fore-

casts are increasingly common, notably the CIA-funded PITF and the Defense Advanced Research

Projects Agency (DARPA) Integrated Conflict Early Warning System (ICEWS; O’Brien 2010). The

PITF (Goldstone, et al, 2010) essentially treat their model as nonstructural; they compare its per-

formance to a more structural models such as that Fearon and Laitin’s model (2003) of civil war

onsets as well as to other nonstructural models such as the Beck et al.’s (2000) neural net model.

In Goldstone, et al. (2010: 200), the PITF uses a 200 country-year training set but provides little

justification for using this data set for training; no set of analyses paralleling those in Figure 1

are reported. ICEWS used a six-year training set (1998-2004) and then evaluated forecasts out-of-

sample for 2005-2006, but no justification was provided for this choice of samples, and the error

bounds were not provided for the forecasts.

Some efforts join judgmental and model based forecasts. Bueno de Mesquita (2010) uses ex-

pert opinion to calibrate his expected utility forecasting model, but he does not report employing

systematic elicitation methods. By all indications he makes no effort to gauge, let alone incorpo-

rate, his experts’ uncertainty about key parameters into his rational choice models (on this point

see Brandt, et al. 2011). BVAR models have been used recently to forecast Israeli-Palestinian rela-

tions by Brandt and Freeman (2006) and by Brandt, Colaresi and Freeman (2008). However, these

investigators make no provision for conflict phase shifts (breakpoints) in spite of the voluminous

literature arguing that conflicts like those in the Levant exhibit regularly exhibit such shifts, as

well as earlier empirical work demonstrating such shifts in cluster-analytical studies (Schrodt and

Gerner 2000).

3 Designing Horse Races

3.1 Measurement

Forecasting is plagued with familiar problems like measurement error and temporal aggrega-

tion. If variables are measured with error, forecasts are likely to be inaccurate. Temporal aggrega-

tion can mask causal relationships and thereby make it difficult to forecast accurately. Practically

speaking, the usefulness of a forecast may diminish if only highly temporally aggregated mea-

sures are available.

Meteorological forecasters also face numerous measurement challenges, along with the fur-

ther complication that their forecasts are three dimensional: they predict weather in space both

horizontally and vertically. To set the initial and boundary conditions as well as the parameters

for their models, weather forecasters construct grids for various geographical coverages and for

8
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different levels of the atmosphere. In some parts of the world, even in North America, actual ob-

servations are sparse (Grimit and Mass 2002: 204). Meteorological forecasters also have problems

of missing data and inaccurately measured data (see, Gneiting, et al. 2006: 969, 978.)

A key concept in meteorological forecasting is that of Ensemble Model Integration or Ensem-

ble Forecasting, a term also associated with model pooling. Probability distributions for selected

meteorological variables at a particular lead time are produced by repeatedly taking draws from

an initial condition probability distribution, a probability distribution that is a composite of the

true initial condition and observational error. The forecasting model then is integrated forward to

the lead time.

In macroeconomic forecasting, one of the most serious measurement issues for forecasts is

“data vintaging.” The data government agencies often publish at any given time—for example he

estimates for Real Gross Domestic Product (RGDP) and Industrial Production (IP)—are updates

of past estimates and, for the most recent time points, they are only preliminary estimates. In other

words, the estimates of the most recent observations are likely to change in the most current ver-

sions of data sets. In addition, at times, government agencies change the definitions of variables.11

As a consequence a macroeconomic forecaster must distinguish between “pseudo real time” and

“real time.” The former applies to final estimates of variables, estimates that are not available

either to analysts or human agents in real time. The final estimates are available only later. “Real

time” connotes estimates that actually are available on a given date; again, some of these estimates

are preliminary. So, for instance, someone today attempting to forecast RGDP ex post in the 1970s

and 1980s might use the final estimates of the variable in her analysis, an exercise in pseudo-real

time. In contrast a forecaster attempting to forecast RGDP in 2011 must decide if she will use

the preliminary estimates of RGDP available today—evaluate performance in the future relative

to the preliminary estimates that will be published in coming months—or, to independently es-

timate final estimates now and in the future and use these estimates of the final estimates in her

forecast evaluation.12

3.2 In-Sample and Out-of-Sample Forecasting

Ex post vs. ex ante is a common distinction used in forecasting designs (Figure 2). Ex post fore-

casting explains observations that already have been obtained; forecasting into the future (variable

values yet to be realized) is called ex ante. These two designs also could be called in-sample and

11Robertson and Tallman (1998 fn. 1) write, “A data series vintage or ’age’ is denoted by the month in which the
entire series existed–when the specific set of numbers was available as data.” These authors give numerous examples
of how a whole set of recent estimates of variables like Real Gross Domestic Product change with each quarterly
publication of the Bureau of Economic Analysis’s (BEA) statistics. An example of a change is the definition of
macroeconomic variables is the 1995 decision of the BEA to alter the definition of U.S. Real Gross Domestic Product.
The BEA began using a chain weighted index that incorporates movements in relative prices and output in time.

12For a useful study of real time data in the U.K., including analyses of breaks in the estimation processes and
“rebasing” of time series, see Garratt and Vahey (2006). Forecasting evaluations of macroeconomic aggregates now
regularly include considerations of which data vintages to employ (Wieland and Wolters, 2010:9; Fildes and Stekler,
2002).
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Figure 2: Temporal Framing of Forecasts. Source: Pindyck and Rubenfeld (1998: figure 8.1)

out-of-sample forecasting. A related idea is that of “now casting” (Wieland and Wolters 2010:

3,10). This gauges the extent to which model training allows the analyst to explain the present

value of a variable, the value at T3 in Figure 2.

A related distinction is that between unconditional and conditional forecasting. In the former,

the observed values of the covariates are used in the forecast; guesses or forecasted values of

the covariates are used in the latter. Ex post forecasting is unconditional forecasting. Ex ante

forecasting can be either unconditional or conditional in nature. An example of a unconditional,

ex ante forecast is one produced by a model that uses three lags of a single covariate. The forecast

three time units ahead (t + 3) then still could be based on an observed value of the covariate at

time t.

A common form of ex post forecasting might be called sequential updating (also known as

rolling or recursive). This design entails moving the estimation through time while keeping track

of the accuracy of the respective forecasts ex post. For example, suppose an analyst had data

on a variable that was measured monthly from 1980:1 to 2000:1. She might use the 120 monthly

observations between 1980:1 and 1989:12 to train her model. Then, she forecasts one step ahead

the value in 1990:1 comparing this forecast to the actual value observed in that month. Next, she

re-estimates her model for the period 1980:2-1990:1 and produces a one step ahead forecast for

1990:2. This forecast is compared with the observed value for 1990:2. This process continues until,

in the last forecast, the data for 1990:1-1999:12 is used to fit a final model and to create the last

ex post forecast for 2000:1. In this way, 120 ex post forecasts based on a series of moving, fitted

models are produced. This design could be made more sophisticated by using each model to

forecast 1, 3 and 6 steps ahead. Indeed, it is likely that competing models will perform differently

at different forecast horizons.13 An alternative design keeps the time of the forecast fixed at a

particular observation in time and examines the properties of the revisions of this forecast over a

13For an example of such a design in macroeconomics—which also considers the effects of data vintaging— see
Wieland and Wolters 2010. Clements and Smith (2000: 256, 264) call this a recursive sampling scheme. In their
analysis, the forecast origin moves forward through the sample with the model orders respecified and parameters
reestimated at each step.

10
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series of steps; this is called fixed-event forecasting (see Clements and Hendry 1998: 3.2.3).

3.3 More on Breakpoints

Forecasters often assume there is a single causal mechanism—the DGP—that persists over

time. When this mechanism changes, forecasts will suffer from “turning points” and other kinds of

errors (Feldes and Stekler 2002). Moreover, while the addition of causal variables may improve the

performance of a forecasting model when the DGP is constant, the addition of noncausal variables

may improve the forecast when the mechanism is changing (Clements and Hendry 1995: 47ff).

Some researchers try to cope with this problem by introducing contextual variables that control

for such changes (Aron and Meulbauer 2010). Another approach is to employ intercept corrections

(Clements and Hendry 1995). A more challenging approach is to build forecasting models with

explicit nonlinear causal mechanisms to actually predict phase shifts or structural breaks in the

DGP.

From a design standpoint, it is common in macroeconomics for forecasters to evaluate their

models’ abilities to forecast in and across business cycles. For instance, Smets and Wouters (2007)

fit their models during the Great Inflation of 1966:2-1979:2 and during the Great Moderation of

1984:1-2004:4. Wieland and Wolters (2010) fit their forecasting models for U.S. economy for peri-

ods before and after turning points identified by the National Bureau of Economic Research.

3.4 Benchmarks and Näıve Models

Many forecasters include in their designs benchmarks and/or naı̈ve models of various kinds.

A common benchmark is the “no change forecast.” The idea is that useful forecasts, at a mini-

mum, should be able to outperform a forecast of no change in the variable of interest. One of the

most well-known benchmark measures is Thiel’s U (1966: 27-28). Suppose that Pi and Oi are the

predicted and observed values of a variable for some set of data i = 1, . . .,n. Then Thiel’s U or

“inequality coefficient,” is defined as

U2 =

∑n
i=1(Pi −Oi)

2∑n
i=1O

2
i

. (1)

If there is no error in any of the forecasts, U = 0; if the forecasts are for no change in the variables,

U = 1. If the forecasts are actually worse than the forecast of no change, U ≥ 1. Related measures

that use the same benchmark model, essentially the flat forecast function of the random walk

model, are explained below.14 A related idea is that of normalized mean square error, ENMSE .

14Equation (1) is the original definition of U (Thiel 1966); the coefficient is expressed as a second degree polynomial.
Despite this formulation, as will be explained in the next subsection, the numerator in the expression on the right
side of the equation is called the root mean square error score. Thiel (1966:28) gives the example of the quotient
on the right side of the formula equaling .63. This means that 63% of the root mean square error would have been
observed had the forecast had been for no change in the variable of interest. For a further discussion of Thiel’s U and
its application in macroeconomics see Armstrong and Collopy 1992, Clements and Hendry 1998: 3.2.4, and Fildes
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This measure compares the errors from the point predictions of a model to those produced by

using the mean of the observations in the training set for all predictions.15

Univariate AR and VAR models sometimes are treated as benchmarks for forecasting. One

reason for using AR and VAR models as naı̈ve benchmarks is that some analysts consider them

atheoretical. But it also possible view such models as reduced forms of structural models, and

there is a very large theoretical literature suggesting that most organizational behavior is in fact

strongly autocorrelated.16 For example, Aron and Muelbauer (2010) use these models as bench-

marks in their recent effort to forecast U.S. inflation.

A parallel idea in meteorology is the reference forecast, a climatological as opposed to a model-

based forecast. Reference forecasts are used to calculate skill scores for competing models.17 In-

terestingly, meteorological forecasters also sometimes use AR and VAR models as benchmarks

forecasting tools (Gneiting, et al. 2006).

3.5 Designing Horse Races in International Relations

While data vintaging seems not to be a problem for international relations forecasters, mea-

surement error and temporal aggregation are.18 One of the main variables used in the PITF fore-

casting model is based on the POLITY IV measures of democracy, and these measures recently

have been shown to be plagued by measurement error (Treier and Jackman 2008). The forecasting

model used by the PITF also is highly temporally aggregated; its forecasts are for two year hori-

zons. Hence it does not tell policy makers much about the prospects for violence and instability

in the short-term. Some short-term forecasting tools have no time metric such as predictions for

events “some time in the future” (Bueno de Mesquita 2010). Applications of time series models

like BVAR, on the other hand, are much more temporally disaggregated and hence potentially of

more value to policy makers (Brandt and Freeman 2006, Brandt et al. 2011).

International relations forecasters use ex post and ex ante designs, although no forecasters we

are aware of employ an ex ante conditional designs. The PITF (Goldstone, et al. 2010: 200ff)

and Stekler 2002.
15Formally we have

ENMSE =

∑
t(y

t − ŷt)2∑
t(y

t −meantrain)2
(2)

where yt is the observation at time t, ŷt is the point prediction at time t, and meantrain is the mean of the
observations of yt in the training set. Weigand and Shi (2000) use this metric in conjunction with two approaches to
density forecasting in their analysis of S & P 500 stock returns.

16The idea of using ARIMA models as benchmarks for macroeconomic forecasting models was suggested years ago
by Dhrymes, et al. (1972).

17Skill scores are described in more detail below. Gneiting and Raftery (2007: 362) write that ”a reference forecast
is typically a climatological forecast, that is, an estimate of the marginal distribution of the predictand. For example,
a climatological probabilistic forecast for maximum temperature on Independence Day in Seattle, Washington might
be a smoothed version of the local historical record of July 4 maximum temperatures.” For another application see
Raftery, et al. 2005, esp. pps. 1157, 1166.

18However, see Lebovic (1995) for an extended discussion of the vintaging issues in at least one form of IR data,
published military expenditure estimates by the United States Arms Control and Disarmament Agency.
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employed a design that appears to be of the sequential updating type. But, in fact, it is more id-

iosyncratic. To show that an analyst armed with their model in 1994 could do a good job forecast-

ing instability in the period 1995-2004, the PITF takes the model they constructed from a random

subsample of country years for the entire data period 1995-2004, fits an unconditional logit model

to data for the period 1955-1994, and then uses it to sequentially forecast all country-years from

1995-2004. In other words, the PITF assumes that somehow their hypothetical analyst in 1994 was

informed by information from the period they forecast ex post. Also, unlike some parallel work

in macroeconomic forecasting, the PITF does not keep the estimation time span constant in their

sequential forecasting. Rather, the time span of the data used to estimate their forecasting model

increases as each year of data is added to the analyst’s sample. Why this design is preferred to the

more conventional form of sequential updating described above is not explained by the PITF. 19

The idea of break points is at the heart of conflict research. For decades scholars have argued

that conflicts shifts back and forth between different phases. These phase shifts have been inter-

preted as multiple equilibria of games of incomplete information and attributed to the invasion of

dynamic versions of such games by certain strategies (Diehl, 2006), to path dependent sequences

of cooperative and conflictual events (Schrodt and Gerner 2000, Huth and Allee 2002a), to multiple

equilibria in strategies played by audiences and elites in two-level games in (non)democracies (Ri-

oux 1998, Huth and Allee 2000b, Rousseau 2005), and to psychological triggers that produce dif-

ferent types of cooperative and conflictual behavior (Keashly and Fisher 1996, Sense and Vasquez

2008). Unfortunately, we know of no forecasting models that incorporate these and other sources

of phase shifts.20

4 Forecast Evaluation

This is a critical topic that, put simply, has not been studied by most political scientists. Con-

sider the most simple, textbook version of a forecasting model: the linear, two variable (structural)

regression model with constant coefficients (Pindyck and Rubenfeld 1998: Chapter 8). Say this

model is Yt = α+ βXt + εt and that εt ∼ N(0, σ2). The estimate of the model’s error variance is

s2 =
1

T − 2

T∑
i=1

(Yi − Ŷi)2. (3)

19This description of the PITF is inferred from is a somewhat cryptic passage on page 200 of the Goldstone et
al article (2010). What is difficult to interpret is the ability of an analyst in 1994 to specify a forecasting model
using some data that he or she could not have observed yet (20 instability onsets and 180 control cases that occurred
between 1995 and 2004). Second, as regards the hypothetical training set he would have used from 1994 onwards, it
is not clear that it is advisable for an analyst to gradually expand the time span of the data set as he sequentially
forecasts into the future (rather than keeping the span of the data used for estimation constant). No defense of this
design feature is offered by the PITF in this passage of their article.

20Recently Park (2010) has proposed break point models to study presidential use of force and certain topics in
international political economy. But Park’s models only allow for one way state transitions to some terminal state. His
models do not allow for state transitions back and forth between states, as we would expect in intra and international
conflict.
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Figure 3: Forecasts From The Simple, Two Variable Regression Model. Source: Pindyck and
Rubenfield 1998: Section 8.3

For the one step ahead point estimate at T + 1, the estimated forecast error variance is:

s2f = s2[1 +
1

T
+

(XT+1 − X̄)2∑T
i=1(Xt − X̄)2

] (4)

The normalized error is ŶT+1−Yt+1

sf
which is t distributed with T − 2 degrees of freedom. The 95%

confidence interval for the forecast at T + 1, ŶT+1, is:

ŶT+1 − t.05sf ≤ YT+1 ≤ ŶT+1 + t.05sf . (5)

This basic forecasting model is depicted in Figure 3. The least squares estimates of the co-

efficients of the model are denoted by α̂ and β̂. The confidence interval is represented by the

solid lines. This interval shows that, even though the forecast may be presented as a point (fixed

value), ŶT+1, there is a band of uncertainty associated with it; the forecast errors are assumed to

be drawn from a particular probability distribution. The forecast is a probability density, under

the normality assumption, is centered at Ŷt+1.
21

The problem is that many political scientists only report and evaluate the point forecast, and

even then they do this uncritically, for instance, by the use of measures like root mean square

forecast error that are highly sensitive to outliers. Political scientists do not incorporate into their

21Tay and Wallis (2000: 235) stress that “a density forecast is implicit in standard construction and interpretation
of a symmetric prediction interval.”
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forecast evaluations either the confidence interval or the forecast density. This hampers our ability

to evaluate the relative performance of our models, especially nonlinear models that are needed

for early warning international conflicts (nonlinear models that allow for conflict phase shifts). As

we explain below, the absence of interval and density forecasting in political science also weakens

the decision theoretic underpinnings of our analyses.

There are essentially three kinds of forecasting and evaluation. In the first, forecasts can be

presented as fixed points; a wide range of evaluation metrics are used to compare these points and

our observations. Forecasts as intervals around the fixed points are the second type; evaluations

are then counts (tests) of the number of times the observations fall into the intervals. In the third

type, forecasts are probability mass functions (densities); evaluations are scores (tests) according to

rules for comparing forecasts with the observed frequencies (distributions) of observations. In the

following subsections, we review each type of forecast evaluation. Then, once again, we critically

evaluate international relations forecasting showing why and how our evaluations should employ

the full suite of evaluative tools.

4.1 Evaluation Metrics for Point Forecasts

More than a dozen metrics for evaluating point forecasts have been studied in the literature.

Armstrong and Collopy (1992) evaluated a collection of metrics for eleven models and for 90 an-

nual and 101 quarterly time series. The six metrics they emphasized were Root Mean Square Error

(RMSE), Percent Better (PB), Mean Absolute Percent Error (MAPE), Median Absolute Percent Er-

ror (MdAPE), Geometric Mean Relative Absolute Error (GMRAE) and Median Relative Absolute

Percent Error (MdRAE). Relative error was defined in terms of a random walk benchmark. The

formulae for these and some related metrics are given in the Appendix.22

Armstrong and Collopy stressed two criteria. The first was reliability. This is the extent to

which a metric produces the same model ranking over a set of horizons and time series. Con-

struct validity was the second metric. It is a measure of how well the metric captures the true

performance of a forecasting model. Armstrong and Collopy conclude that the GMRAE is most

useful for choosing model parameters, the MdRAE is preferred for choosing among parameter-

ized models for a small number of time series, and the MdAPE is most useful for choosing among

parameterized models for a large number of time series. While they note that decision makers find

RMSE easy to interpret—albeit if our experience with generations of students is any indication,

they are probably not interpreting the full impact of squaring the error correctly—they recommend

against the use of RMSE. This metric, which often is also called root mean squared forecast error,

RMSFE, proved highly unreliable in their study (due to its sensitivity to outliers).23

22Recall that a pure random walk has a flat forecast function. The unconditional expectation of the random walk is
a constant (y0). The conditional expectation of a random walk is its current value; for a random walk model written
yt+1 = yt + εt, Etyt+1 = Et[yt + εt] = yt. See, for instance, Enders (2010: 184ff).

23The eleven forecasting tools used by Amstrong and Collopy are a subset of the twenty four tools that were
evaluated in Makridakis, et al. (1982). These include “extrapolation” methods as well as forecasting models (on
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In their assessment of the use of the point forecasts in macroeconomics, Clements and Hendry

(1998: Chapter 2) explain as “First Principles” the optimality of conditional expectation, and how

under certain conditions, for a given information set, conditional expectation is unbiased; it pro-

duces minimum mean squared forecast error. They show this for different step-ahead forecasts for

AR(1), ARMA, and VAR(1) models. They also explain why this predictor is optimal for squared

error loss functions (loss functions that put greater emphasis on large vs. small errors and which

associate a equal loss with over and under prediction;ibid. Section 3.2.1). Clements and Hendry

propose the general forecast error second moment matrix and its determinant, denoted by GFESM,

as an (invariant) measure of forecast accuracy. Nonetheless, the use of the RMSFE is still common

in macroeconomics, for example in the recent forecasting efforts by Centre for Economic Policy

Research (Aron and Muelbauer 2010, Wieland and Wolters 2010).

Two additional point forecast criteria should be mentioned. When the variable of interest is bi-

nary in nature, Receiver-Operator Characteristic Curves (ROC curves) sometimes are used. These

curves plot the relative frequency of Type I and Type II errors as a function of the cut points that

determine each value of the binary variable. The intention of the ROC curve is to provide a cal-

ibration of the test based on the relative cost to the decision maker from each kind of error. In

recent years, one is also seeing the ROCs area under curve (AUC) measures used to assess overall

predictive accuracy. As Sing, et al. (2009:3) note, “[AUC] is equal to the value of the Wilcoxon-

Mann-Whitney test statistic and also the probability that the classifier will score a randomly drawn

positive sample higher than a randomly drawn negative sample.” An AUC of 0.5 indicates that

the model is only performing as well as chance. Ulfelder [2011] observes that in political forecast-

ing,“An AUC of 0.5 is what you’d expect to get from coin-flipping. A score in the 0.70s is good; a

score in the 0.80s is very good; and a score in the 0.90s is excellent.”24

The other criteria is termed “rationality testing.” This is the practice of fitting simple regression

models for observed and forecasted values of variables and then testing the joint condition of a

zero intercept and a value of unity for the coefficient on the forecasted values. That is, one fits the

regression:

yt+k = a+ byft (k) + µt (6)

where yt+k is the observed value at time t at forecast horizon k, yft (k) is the forecasted value at time

t+k, µt is a iid normally distributed error term with zero mean. It is rational to use the forecasted

values if a=0 and b=1 and the error term in (6) is not serially correlated.25

this distinction see Chatfield 1993: 122-123). Other criteria considered by Armstrong and Collopy include Under-
standability, Sensitivity (how performance changes with changes in model parameters) and Relationship to Decision
Making. They are careful to note in their conclusion that their results may differ for evaluating a model’s performance
on a single time series and also that their design did not include ”turning points.”

24http://dartthrowingchimp.wordpress.com/2011/06/09/forecasting-popular-uprisings-in-2011

-how-are-we-doing/. Accessed 10-Jun-2011.
25See Fildes and Stekler (2002: esp. 440). They describe several tests for rationality and also discuss the necessary

and sufficient conditions for a forecast to be rational. See also Clements and Hendry (1998: Section 3.2.2.)
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Figure 4: Fan Chart for Inflation Forecast of the Bank of England. Source: Gneiting 2008: 320

4.2 Interval Forecasts

Interval forecasts are used when the full predictive distribution for a variable is not available.

They are a special case of a more general type of evaluation called quantile prediction (Gneiting

and Raftery 2007: 370). Interval forecasts recognize the uncertainty attached to point forecasts and

provide decision makers with an idea of the range of values a random variable might take at some

future date. As such they are useful for contingency planning and other purposes.

The key concept is the “prediction interval” or PI.26 PIs differ from conventional confidence

intervals insofar as PIs are an estimate of the range of unknown future values of a random variable
at the time a forecast is made. Confidence intervals, in contrast, represent the range of what

usually are assumed to be fixed but unknown parameters. PIs now are regularly published for

the macroeconomic forecasts of economic institutes and central banks. An example is the Bank of

England’s inflation forecasts (Figure 4).27

For example, assume that we want to make a forecast of a random variable, Xt, k steps ahead,

Xn+k, and that we have realizations of Xt for times t = 1, . . . , n. Denote these observations by

x1, . . . , xn. Denote our point forecast at n + k by x̂n(k). In order to construct a 100(1 − α)%-ile

26The following paragraph is a summary of Chatfield (1993, especially pps. 121-124). See also, Chatfield (2001)
and Taylor (1999).

27Chatfield (2001) repeats the list of reasons from his (1993) article on why PIs often are not used. But Clements
and Hendry (1998: Chapter 1, fn. 6) say that, like the Bank of England, the U.K. Institute for Economic and Social
Research also publishes PIs for its forecast. Clements and Hendry note that the Bank of England’s chart is known
for its “rivers of blood.”

Much work has been devoted to understanding how PIs differ for stationary or nonstationary processes. For
stationary processes, as the forecast horizon becomes longer and longer, var[en(k)] tends to the variance of DGP. So
the PI will have finite width as k increases (Chatfield 1993: 133). In contrast, for nonstationary DGPs, there is no
upper bound to the width of the PI. Clements and Hendry (1998: chapters 6, 11) investigate interval forecasting for
this case. A forecast based on cointegrated series will have PIs with finite limiting PMSE. See Lütkepohl (2006).
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PI for Xn+k, we usually use the expression x̂n(k) ± zα
2

√
var[en(k)] where en(k) is the conditional

forecast error corresponding to our point prediction and zα
2

is the respective percentile point of the

standard normal distribution.28 This equation assumes that the forecast is unbiased or, E[en(k)] =

0 and that the prediction mean squared error (PMSE) E[en(k)2], is equal to var[en(k)]. Once more,

the forecast errors are assumed to normally distributed.

Chatfield (1993) analyzes the effects of parameter uncertainty on the estimation of the PIs. He

stresses the challenges of evaluating the var[en(k)], especially when, as is often the case, there

is no analytic expression for the true model PMSE.29 His review includes a critical evaluation of

approximations, empirical, simulation, and resampling methods for estimating var[en(k)]. Chat-

field recommends against using certain approximations. The problem of PIs typically being too

narrow looms large in Chatfield’s discussion. He traces this problem to model uncertainty and

other issues and recommends using 90% (or perhaps 80%) PIs to avoid tail problems (1993: 489).

Christoffersen (1998) develops likelihood ratio tests to evaluate the unconditional coverage and

independence of a series of out-of-sample interval forecasts.30

While interval forecasts were not widely used in the 1980s and early 1990s, they have become

more common in finance and economics. Christofferson’s (1998) work is expressly motivated by

the challenges of risk analysis in general and of modeling the volatility of financial time series in

particular. ARCH and similar models suggest that unconditional forecasting models will produce

intervals that are too wide in times of tranquility and too narrow in times of turbulence in financial

markets. To address this problem, Christoffersen shows how his tests can be applied to evaluate

the PIs produced by dynamic risk models. In this context, he shows, contrary to the conventional

wisdom of the 1990s, that PIs can be too wide as well as too narrow and that a single forecasting

model can produce PIs suffering from both problems during the same (ex post) forecasts.

28Formally, en(k) = Xn+k − x̂n(k). So en(k) is a random variable.
29For some models, an expression for var[en(k)] can be derived. An example is the simple AR(1) without a constant.

The expression in this case is

E[en(k)2] =
σ2
ε (1− α2k)

(1− α2)
(7)

where σ2
ε is the variance of the error term in the AR(1) model, α is the AR(1) coefficient, and k is the forecast

horizon. For further derivations of true PMSE for selected models see Chatfield 1993: Section 4.2, Clements and
Hendry Chapter 4, and, for selected, multivariate and simultaneous equation models, Lütkepohl 2006.

30Briefly, for an observed sample path of a time series yt, (yt)
T
t=1, a series of interval forecasts is denoted by

[(Lt|t−1(p), Ut|t−1(p))]Tt=1 where Lt|t−1(p) and Ut|t−1(p) are the lower and upper bounds of the ex ante interval
forecast for time t made at time t−1 with coverage probability p. Christoffersen defines an indicator variable, It that
is 1 when the realization is in the interval and 0 otherwise. He then defines a sequence of interval forecasts as efficient
with respect to information set Ψt if E[It|Ψt−1] = p for all t. He proves that testing E[It|Ψt−1] = E[It|It−1, . . . , It] = p
for all t, is equivalent to testing that the sequence It is iid Bernoulli with parameter p. He defines a sequence of
interval forecasts as having correct conditional coverage in this sense. Christoffersen goes on to derives three likelihood
ratio tests for interval forecasts: for unconditional coverage (LRuc), for independence (LRind), and for coverage and
independence jointly (LRcc). In order to address the problem of model uncertainty, Christoffersen designed his tests
to be model (method) and distribution free.
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4.3 Evaluating Probabilistic Forecasts: Scoring Rules and the Concepts Cali-

bration and Sharpness

The case for probabilistic forecasting forecasting was made in a classic paper by Dawid (1984).31.

The idea is to elicit from an assessor (judgmental forecasting) or produce from a model a probabil-

ity density (mass function) over future quantities or events. For example, for continuous random

variables, a density forecast is “a complete description of the uncertainty associated with a pre-

diction, and stands in contrast to a point forecast, which by itself, contains no description of the

associated uncertainty” (Tay and Wallis 2000: 235). Decision theory shows that while in general it

is impossible to rank two incorrect forecast densities for two forecast users, if the forecast density

corresponding to the true data generating process can be found, all forecast users will prefer that

density regardless of the loss functions they employ.32 In addition, density forecasts help analysts

discriminate between linear and nonlinear models (Clements and Smith 2000) and cope with low

signal to noise ratios in time series data (Weigand and Shi 2000).33

The evaluation criteria for probabilistic forecasts include calibration and sharpness. Calibra-

tion is the statistical consistency between the distributional forecasts and observations. Sharpness

deals with the “concentration of [the] predictive distribution and is a property only of the fore-

casts” (Gneiting and Raftery 2007: 359). The goal of probabilistic forecasting is to achieve a high

degree of sharpness subject to calibration.34

Among the tools used in these evaluations are scoring rules. These assign a number that rep-

resents the degree of association between the predictive distribution and observed events. Those

scores are used to rank the success of forecasters and of models and are an integral part of what

meteorologists call “forecast verification.” A scoring rule is “proper” if it gives an assessor an in-

centive to reveal her true probability mass function (density) rather than to “hedge (supply equal

probabilities for each event, for example). Model fitting can be interpreted as the application of

31Precursors are Rosenblatt, (1952) and Pearson (1933)
32Tay and Wallis (2000: 236) explain that different loss functions may lead to different optimal point forecasts if

the true density is asymmetric.
Briefly, Diebold, et al. (1998) explain the advantages of finding the forecast density corresponding to the true data

generating process. They compare the action choice for what is believed to be the correct density, p(y), for a variable
yt with realizations {yt}mt=1 with the action choice for what is the true data generating process, f(y). They show
that, if two decision makers have different loss functions, and, if neither of two forecast densities j and k, pj(y) and
pk(y), are correct, it not possible to rank these densities. One decision maker might prefer to use pj(y) while the
other decision maker might prefer to use density pk(y). They give an example in which the true density is Nor(0, 1),
the two incorrect densities are Nor(0, 2) and Nor(1, 1), and one decision maker bases her choice on the forecast mean
while the other bases his decision on the error in the forecast of the uncentered second moment. But, again, if they
can find the true forecast density, in their illustration, Nor(0, 1), these and all other decision makers will prefer to
use it. See Diebold, et al. 1998: 865-866 for a fuller, formal development of this result.

33For instance, Clements and Smith (2000) explain why point metrics usually don’t show nonlinear models to be
superior at forecasting in comparison to linear models. They then show how density forecast evaluation methods
can be used to compare the performance of linear and nonlinear models (AR and SETAR) and linear and nonlinear
multivariate models (VAR and Nonlinear VAR).

34See also Raftery, et al. 2005. Hamill (2001: 551-552) equates the concepts of calibration and “reliability”.
Gneiting, et al. 2007 develop three concepts of calibration: probabilistic, exceedance and marginal. We focus on the
first of these here.
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Rule Form Range

Quadratic Q(r, d) 1−
∑

i(ri − di)2 [-1,1]

Brier PS(r, d) 1−Q(r, d) [0,2]

Spherical S(r, d)
∑
i ridi

(
∑
i r

2
i )

1
2

[0,1]

Logarithmic L(r, d) ln(
∑

i diri) (−∞, 0]

Table 2: Four Well Known (Proper) Scoring Rules for Discrete Random Variable Forecasts

optimum score estimators, a special case of which is maximum likelihood.35

There are several well known scoring rules for discrete random variables.36 Consider a vari-

able that produces n discrete and mutually exclusive events, E1, . . . , En. Say that an assessor sup-

plies at time t a judgmental, probabilistic forecast about the values the variable will assume at

time t + 1. This probabilistic forecast is in the form of a row vector r = (r1, . . . , rn) where ri is

her elicited probability that event i will occur. Let her true assessment be represented by the row

vector p = (p1, . . . , pn). Finally let the row vector d = (d1, . . . , dn) denote the actual observation at

t + 1 so that, if event i is realized, di = 1 and dj = 0 for j 6= i. Then an assessor (judgmental fore-

caster) is considered perfect in the normative sense if her probability vector, r, is “coherent”—it

satisfies the laws of probability—and her vector corresponds completely to her true beliefs (r = p).

The idea of a proper scoring rule is one that makes it rationale for this last condition to be satisfied

(r = p), or a rule for which reporting p maximizes the assessor’s expected score (utility).

Some examples of such rules are described in Table 2; all of these are proper rules. For instance,

the logarithmic scoring rule was suggested by Good (1952). It is sometimes called an “ignorance

score.” It also is a “local rule” insofar as its value depends only on the probability assigned to

outcome that actually is observed, not on the probabilities assigned to outcomes that are not ob-

served.37

As an illustration, consider the event that precipitated the Gulf War: Iraq’s invasion of Kuwait.

Suppose that there were only three possibilities (n = 3): ground invasion, air attack, and no inva-

sion. Suppose that through an elicitation tool, forecasters A and B supplied the vectors (.35, .60,

35Gneiting and Raftery (2007) provide a theory of proper scoring rules on general probability spaces. They explain
the relationships between these rules and information measures and entropy functions. As regards estimation, they
explain how proper scoring rules suggest useful loss functions from which optimum scoring estimators can be derived.
Finally, they explain the link between proper scoring rules and Bayesian decision analysis.

36The following passage is a condensation of Winkler and Murphy (1968: 753-5). A more general treatment of
scoring rules for forecasting models of discrete variables is Gneiting and Raftery 2007: Section 3.

37For example, to show that the quadratic scoring rule, Q(r, d) in Table 2, is proper, Winkler and Murphy (1968:
754) note that the assessors expected score for this rule is:

E(Q) =
∑
j

pjQj(r, d) =
∑
j

p2j −
∑
j

(rj − pj)2, (8)

which is maximized when r = p. They also show that the spherical and logarithmic rules also are proper.
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Forecaster Q(r, d) Brier PS S(r, d) L(r, d)

A .215 .785 .503 -1.050
B .265 .735 .518 -1.204

Table 3: Illustrative Scores for Two Hypothetical Forecasters for Iraq’s Behavior in 1991. Forecaster
A: (.35, .60,. 05); Forecaster B: (.30, .35, .35).

.05) and (.30, .35,and .35), respectively. Iraq launched a ground invasion of Kuwait, so event E1

was realized. As Table 3 shows, forecaster B would have received a higher score according to the

quadratic and spherical scoring rules whereas forecaster A would have received a higher score

according to the logarithmic score. The Brier PS score, because its interpretation is the reverse of

the quadratic score, also would rank forecaster B more proficient than forecaster A. These rank-

ings reflect the fact that the logarithmic scoring rule emphasizes the assessed probability only of

the event that actually occurred whereas the other rules incorporates all the assessed probabilities

relative to this realization.38

For evaluating forecasts of ordered categories of a discrete random variable, the Ranked Prob-

ability Score (RPS) often is used. The RPS includes an evaluation of the “distance” between the

realization and the relative probabilities assigned by a forecaster to the different (ordered) cate-

gories of events. Assume that there are K such categories and that the assessor’s forecast is the

row vector (p1, . . . , pK). Then the scoring rule for when each observation j actually occurs is:

Sj =
3

2
− 1

2(k − 1)

K−1∑
i=1

[(
i∑

n=1

pn)2 + (
K∑

n=i+1

pn)2]− 1

K − 1

K∑
i=1

|i− j|pi. (9)

Sj ranges from 0 for the worse possible forecast to 1 for the best forecast. It also is a proper scoring

rule.39

For example, say that a particular intra state conflict moves back and forth between four con-

flict phases.40 Call the count of conflictual events at time t, Ct. And assume that the phases are

defined by an ordered set of categories of such counts. To be more specific, for phase 1: Ct = 0-10;

phase 2: Ct = 11-20; phase 3: Ct= 20-30; and phase 4: Ct > 40. When asked what phase the con-

flict will be in in (t+1) analyst A provides the forecast (.1, .3, .5, .1) while analyst B provides the

forecast (.5, .3, .1, .1). The scores according to this rule for the two analysts are reported in Table

4. Note that, if the highest phase of the conflict is realized, phase 4, analyst A scores .67 while his

counterpart scores .43. This is because analyst A assigns more overall probability to phases 3 and

38When the quadratic score implies the best performance, Q(r, d) = 1, PS = 1 − 1 = 0. Conversely, when the
Q(r, d) = −1, Brier PS = 1 − −1 = 2. For an exposition of the Brier score and its relation to Finetti’s work in
statistics, see Seidenfeld 1985: 287.

39The classic paper on the RPS is Epstein (1969). Epstein derives the rule from in a decision theoretic framework
that represents costs and losses associated with preparing for and experiencing meteorological events. Seemingly in
response to practice of hedging, Epstein also derives a version of the scoring rule for the case in which assessors assign
equal probability to all K categories.

40The following example is based on the weather illustration in the original Epstein article (1969).
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Observed Analyst A Analyst B
category (.1,.3,.5,.1) (.5,.3,.1,.1)

1 .61 .90
2 .87 .90
3 .94 .70
4 .67 .43

Table 4: Rank Probability Scores for Conflict Phase Forecasts by Two Hypothetical Analysts

4 than analyst B. Conversely, if phase 1 or 2 is realized, analyst B would perform better since he

assigns more probability to these phases than analyst A.

Suppose the analyst or model produces a predictive density function (PDF ) for future val-

ues of a variable. In the case of human subjects this might be accomplished by means of certain

kinds of elicitation.41 Predictive densities might be obtained from models either by making dis-

tributional assumptions about estimation uncertainty or, as is increasingly common, by means of

computation (Brandt and Freeman 2006, 2009). In this case evaluative tools differ according to

whether they are based on binary scoring rules which are defined on the probability space (unit

interval) or on payoff functions that are defined on the space of values of the variable of interest

(real line).42

There are limiting versions for the three scoring rules of the first type we described above for

discrete variables.43 Assume x is the observed value of the variable we are trying to forecast and

that r(x) is a probability density supplied by the analyst or model. Then the continuous analogues

of the earlier scoring rules are, respectively:

Quadratic: S(r(x)) = 2r(x)−
∫ ∞
−∞

r2(x)dx (10)

Logarithmic: S(r(x)) = log[r(x)] (11)

Spherical: S(r(x)) =
r(x)

[
∫∞
−∞ r

2(x)dx]
1
2

. (12)

These rules also are strictly proper and each has distinct properties. For example, the logrithmic

rule penalizes low probability events; it is highly sensitive to extreme values. As we explain in

Appendix 2, these rules can be generalized into a collection of formulae for predictive densities all

of which are based on a simple binary form of scoring.

One of the most widely used scoring rules is the Continuous Rank Probability Score (CRPS).

The CRPS is defined as follows (Hersbach 2000: 560-1): let the forecast variable of interest again

be denoted by x, the observed value of the variable by xa, and the analyst’s (or model’s) PDF by

41A review of these elicitation methods and an application to terrorist network analysis is Freeman and Gill (2010).
42On this distinction see Matheson and Winkler (1976: 1092, 1095). These authors also use the distinction

probability-oriented and value-oriented in this context. See Figures 9 and 10 in Appendix 2.
43These examples come from Matheson and Winkler (1976: 1089)
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Figure 5: The CRPS. Source: www.eumetalca.org/ukmeteocal/verification/

ρ(x). The CRPS is

CRPS(P, xa) =

∫ ∞
−∞

[P (x)− Pa(x)]2dx, (13)

where P and Pa are the cumulative distributions:

P (x) =

∫ x

−∞
ρ(y)dy (14)

Pa(x) = H(x− xa). (15)

Here, H is the Heaviside function: H(x− xa) = 0 if (x− xa) < 0 and H(x− xa) = 1 if (x− xa) ≥
0. The CRPS is the difference between the total areas of the predicted and observed cumulative

distributions, the shaded area in Figure 5. It ranges between zero and one, with lower values

indicating better performance, since then the forecast and observed densities match more closely.

The CRPS is measured in units of the forecasted variable for each forecast point. In application,

an average of the score is calculated over this set of forecasts or grid points, k:

CRPS =
∑
k

wkCRPS(Pk, x
k
a) (16)

where wk are weights set by the forecaster (typically, wk = 1
k ).

The CRPS assesses both calibration and sharpness. The attractive properties of the CRPS are

that it is sensitive to the entire range of x, it is defined in terms of predictive cumulative rather

predictive densities, and it is readily interpretable as a integral over all possible Brier (PS) scores.
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Approaches to computing the CRPS are discussed in Gneiting and Raftery (2007: Section 4.2).44

Verification rank histograms (VRHs) or Talagrand diagrams are one of the main tools used to

assess calibration. Gneiting, et al. (2007: 252) call the VRH the “cornerstone” of forecast evalua-

tion. Hamill (2001: 551) explains the idea behind the the VRH for forecasting ensembles:

. . . if ensemble relative frequency suggests P per cent probability of occurrence

[of an event], the event truly ought to to have P probability of occurring. For this

probability to be reliable [calibrated], the set of ensemble member forecast values at

a given point and the true state (the verification) ought to be able to be considered

random samples from the same probability distribution. This reliability [calibration]

then implies in turn that if a n-member ensemble and the verification are pooled into

a vector and sorted from lowest to highest, then the verification is equally likely to

occur in each of the n + 1 possible ranks. If the rank of the verification is tallied and

the process repeated over many independent sample points, a uniform histogram over

the possible ranks should result.

For each forecast the rank of the observed value is tallied relative to the sorted (ranked) ensem-

ble forecasts. The population rank j then is the fraction of times that the observed value (“truth”),

when compared to the ranked ensemble values, is between ensemble member j − 1 and j. For-

mally, rj = P (xj−1 ≤ V < xj) where V is the observed value, x is a sorted ensemble forecast of

the indicated rank and P is the probability. If the ensemble distribution is calibrated, these ranks

will produce a uniform histogram.

A related concept is the probability integral transform (PIT). This is defined in terms of realiza-

tions of time series and their one step ahead forecasts. Let {yt}mt=1 be a series of realizations from

the series of conditional densities {f(yt|Ωt−1)}mt=1 where Ωt−1 is the information set. If a series of

one-step ahead density forecasts, {pt−1(yt)}mt=1 coincides with {f(yt|Ωt−1)}mt=1 the series of PITs of

{yt}mt=1 with respect to {pt−1(yt)}mt=1 is i.i.d. U(0, 1) or,

{zt}mt=1 =

{∫ yt

−∞
pt−1(u)du

}m

t=1

∼ U(0, 1). (17)

The CRPS is defined, in part, in terms of the PIT—via the forecast density. For a collection of

forecasts and series of observed values of a variable, PIT values can be calculated for a set of

forecasts and then these values arranged in a VRH.45

The VRH is used in the two ways: first it is expressed either in terms of familiar relative

44The properties of the CRPS and how it can be decomposition into a reliability, uncertainty, and resolution part
are discussed in Hersbach (2000). He explains the connection between the CRPS and the Brier (PS) score and how,
for a collection of deterministic forecasts, the CRPS is equivalent to MAE. Gneiting and Raftery (2007) develop the
decision theory for this and the other scores in probability spaces. They also note that atmospheric scientists use the
CRPS “negative orientation:” CRPS ∗ (F, x) = −CRPS(F, x). Later in their article the authors explain how the
CRPS can be built up from predictive quantiles.

45The definition of the PIT in this paragraph is from Diebold, et al. (1999, 1998). An explanation of how the PIT
is at the heart of Dawid’s prequential principle is Gneiting, et al. (2007: 244).
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Figure 6: Verification Rank Histogram. Source: Gneiting, et al. 2005

frequencies or its continuous analogue, a histogram density with Figure 6 illustrating the first

kind of VRH; see the Appendix for an explanation of the second. Visually, a U-shaped VRH

indicates that the forecasting model is underdispered (too little variability, prediction intervals

are too wide) while a hump-shaped VRH indicates the forecasting model is overdispersed (too

much variability, prediction intervals are too narrow).46 Sometimes a cdf plot is used instead of

the VRH. If the VRH is uniform, its cdf ought to be approximately a 45 degree line (see Clements

and Hendry 2000: 249ff). The χ2 test can be used to assess uniformity; other tests are available for

this purpose such as the Kolmogorov-Smirnov test (Diebold, et al. 1998; Tay and Wallis 2000). For

time series data, it is important to establish, before testing for uniformity, that PITs are i.i.d. using

a correlogram (Diebold, et al. (1998, 1999); Clements and Hendry (2000); Gneiting, et al. (2007:

Section 4.1.)). Hamill (2001) shows that the VRH can be flat despite the fact that the forecasts

suffer from conditional bias. Sampling from the tails of distributions, from different regimes, and

across space without accounting for covariance at grid points all can produce mistaken inferences

from the shape of the VRH. Hamill recommends forming the VRH from samples separated in both

space and time. Diebold, et al. (1998), Diebold, et al. (1999) and Clements and Smith (2000) show

how the PIT and VRHs can be applied in multi-step and multivariate forecasts.47

On the basis of Hamill’s critique of the VRH and an examination of spread-error plots for some

sample data, Gneiting, et al. (2005) and Gneiting, et al. (2007) recommend that an assessment of

46Hamill (2001) provides some simple examples to illustrate how the VRH can reveal over and underdispersion. He
form VRHs by taking draws from truth in the form of a N(0,1) distribution and from biased (incorrect) ensembles
in the form of a collection of normal distributions N(µ, σ) for which µ 6= 0 and(or) σ 6= 1. See also Gneiting, et al.
(2007: Section 1).

47The extension of the PIT in multivariate analysis involves decomposing each period’s forecast into its conditionals.
See Diebold, et al. (1999: 881) and Clements and Smith (2000:862-3)
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sharpness be included in the evaluation of probabilistic forecasts. Recall sharpness has to do with

the concentration of the predictive distribution. Gneiting, et al. (2007) summarize the prediction

intervals with box plots to gauge sharpness of competing meteorological models.

Probabilistic forecasting became prevalent in the late 1990s.48 It is now at the heart of forecast

verification in meteorology. Meteorologists use a suite of the tools described above to evaluate

such forecasts. For instance, Gneiting, et al. (2006) use the CRPS, PIT and RMSE to evaluate the

RST model. Gneiting, et al. (2007) use a combination of calibration tests (PIT) and box plots along

with MAEs, log scores, and CRPS to rank three algorithms for forecasting windspeed. 49 Proba-

bilistic forecasting is employed in finance to study high frequency exchange rate series (Diebold,

et al. 1998) and stock returns (Weigand and Shi 2000), and to evaluate portfolios (Tay and Wallis

2000). The PIT, logarithmic scoring and MSE are used in these studies. Clements and Smith (2000)

use the PIT and VRH as well as some related statistical tests to study a two variable model of

the U.S. macroeconmoy. Some more recent work in macroeconomics uses the log predictive score

(Geweke and Amisano 2009).

4.4 Evaluating Forecasts in International Relations

International relations forecasters expressly run horse races. The PITF goes to great lengths to

compare the performance of its model with those of its competitors (Goldstone, et al. 2010). The

problems with the forecast evaluations of the PITF are a) they only use point evaluation to gauge

the accuracy of competing models and b) they make almost no provision for estimation uncer-

tainty. Accuracy assessments are based on percent correctly predicted under strong assumptions

about cut-points for (un)conditional logit models on the one hand, and comparisons of point based

decile rankings of country probabilities of instability. No other metrics are employed. Equally im-

portant, with the exception of the occasional calculation of confidence intervals for odds ratios

(ibid. Table 1), the PITF never incorporates estimation uncertainty in its analysis; no error bands

are reported either for its percent correctly predicted or its rank comparisons. Claims about the

victories of its models over those based on the work of Fearon and Latin, neural network set-ups,

and other competitors therefore are difficult to evaluate. Earlier critiques of the PITF (King and

Zeng 2001) explain how decision theory can be used to determine cut points, how scoring rules

like ROC curves can be employed in forecast evaluation, and how confidence intervals can be con-

structed for relative risk and first differences. However, these critiques do not do go far enough in

incorporating estimation and other kinds of uncertainty. For example, they do not provide error

48Fildes and Stekler’s (2002) claim that probabilistic forecasting has not caught on in the natural and social sciences
is simply inaccurate. See, for instance, the piece by Gneiting and Rafterty (2005) in Science, and the Introduction
to the special issue of the Journal of Forecasting by Timmerman (2000). Diebold, et al. (1998) explain how the
use of probabilistic forecasting increased due to the interest in assessing financial portfolios and improvements in
recalibration methods, more specifically, because, in financial management, the tails and other features of the forecast
distribution are of special interest (VaR).See also the introduction to Geweke and Amisano (2009).

49The information about forecast verification at the University of Washington research center can be found at
http://isis.apl.washington.edu/bma/index.jsp. See also http://probcast.washington. edu
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bands for their ROC curves.

Recent work with BVAR and multi-equation time series models also conducts small horse races

(Brandt, Colaresi and Freeman, 2008; Brandt and Freeman 2006). Despite the critique summarized

above, these works employ RMSE to evaluate models. This work produces full posterior densities

for the forecasts of Israeli-Palestinian-US and other conflict systems (ibid). Yet the investigators

have not attempted to apply the CRPS or to assess the calibration and sharpness of their forecasts.

5 Illustrations

Above we discussed the challenges of constructing forecasting models, designing competitions

between forecasting models, and evaluating forecasting models. Because many of the advances

in other disciplines have not been applied in political science, we focus now on the third topic

(see, again the southeast corner of Table 1). We first provide a simulation that demonstrates the

pitfalls of using familiar point metrics in forecast evaluation. Then we evaluate a horse race for a

collection of models in the cross straits conflict.

5.1 The Pitfalls of Using Point Evaluation

As we have stressed in our review of the international relations forecasting literature, there is

much agreement theoretically and empirically that international conflicts exhibit regime change

or phase shifts. In the spirt of the simple illustrations in Hamill (2001) and Gneiting et al (2007),

we therefore generate sample data from a mixture model. We then evaluate some very simple

forecasting models for these data.

The data generation process is a mixture model with the following specification:

xi = 0.5wi + 0.5vi, i = 1, . . . , 300 (18)

wi = N(−1, 4) (19)

vi = N(1, 4). (20)

Three forecasting models are proposed for this DGP. The first, or mixture forecast is based on

estimating the DGP from the 300 observation sample. This mixture forecast density is estimated

by an expectations-maximization algorithm to be 0.48ŵi + 0.52v̂i with ŵi ∼ N(−1.14, 4.98) and

v̂i ∼ N(1.11, 3.61). The second, naı̈ve forecast is based on the sample mean and variance. This

forecast density is N(0.04, 5.54). The third, normal forecast is to just take draws from N(0, 1). For

each forecasting model we construct an ensemble of 200 draws for each of the 50 forecasted obser-

vations. These “true” or realized values of the DGP are not used in any of the estimations. Thus,

the forecasts are ex ante for 50 observations.

As in illustrations in Hamill (2011) and Gneiting et al (2007), this example greatly simplifies

the presentation of the PIT, VRH, and other forecast diagnostics. This is because the forecast
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Mixture Näıve Normal

RMSE 2.79 3.33 2.58
MAE 2.25 2.68 2.10

CRPS 1.44 1.37 1.53
Logarithmic(IGN) 2.65 2.29 3.82

Table 5: Forecasting model assessment measures.

performance measures are not confounded by the presence of serial correlation which can greatly

affect perceived forecast performance. The three models also forecast (nearly) the same mode, so

we can focus on the distributional fit of the true model versus its inferior competitors.

Table 5 presents the average RMSE, MAE, CPRS, and ignorance (IGN) measure for the forecast

ensembles for each model.50 The best forecasting performance on each metric is highlighted in

bold.

The key conclusion based on these forecast performance metrics is that the “true model” is never the
winning horse. The forecasting performance of the true model is nearly the same as the “winner”,

but the mixture model is never in fact the winner. This illustrates the earlier point that using a

single metric like the familiar RMSE or MAE tells us little about forecasting performance.

More useful is a comparison based on the PIT or the VRH. Figure 7 presents these plots. Recall

that better fitting models have uniform PIT and VRH histograms. Models that have underdis-

persed forecasts have U-shaped plots; those, that are humped indicate overdispersion. The PIT

plots show that the normal forecast is underdispersed:the forecast ensemble variability is lower

than that observed in the data. Both the mixture and naı̈ve forecast have flatter PIT plots. We

see here why the average CRPS is slightly better for the naı̈ve model: it covers the tails of the

distribution slightly better than the mixture model, but not by much.

The VRH gives the number of times a forecast in the ensemble is greater than the observed

value. This is why the histogram’s x-axis runs from 0 to 200, since forecast ensemble could theo-

retically never or always be above the true value.51 Here, the VRH of the normal forecast deviates

from uniformity, while the VRH’s of the mixture and naı̈ve forecasts are closer to uniformity. For-

mally, one can test for the distributional equivalence we are analyzing here using a Komolgorov-

Smirnov test for whether the VRH is uniform. Employing this test, the p-values are 0.13 for the

mixture forecast, 0.95 for the naı̈ve forecast, and 0.02 for the normal forecast. So we have strong

evidence against the forecast distribution being N(0, 1), but cannot make a clear choice between

the mixture and naı̈ve forecasts, since both have uniform VRHs.52

50The ignorance metric is the negative log density of the forecast errors, evaluated at the observed data. Smaller
values thus indicate more agreement between the forecast and the observed data.

51So for example, consider the VRH in the southeast corner of Figure 7, the VRH for the N(0,1) forecast. The first
bar in the VRH has height 14. This means that 14 times in the forecasting exercise (out of 50 total) none of the 200
forecasts in a given ensemble were larger than the true value taken from the DGP.

52We can apply the Komolgorov-Smirnov test to assess the uniformity of the PITs as well. For each forecast model
the PIT deviates from uniformity based on this test.
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Figure 7: PIT Histograms and VRH plots for Three Forecasting Models of a Mixture DGP

What we learn this example is that the forecast performance, even of the odds-on favorite

horse (in this case the DGP) may not be that good. Ranking forecasts purely based on a metric

like RMSE, MAE, or even CRPS can give a false sense of the forecast quality. As we see here, the

losing horse—the mixture forecast—is nearly as good as the naı̈ve model and in fact performs just

as well on the VRH metric that assesses the entire density. The benefit of the PIT and the VRH

is that they both can show us how well calibrated and how sharp the forecasts are as well, since

they provide information about the forecast density comparison. So while we could rank horses

by how many races they win alone, the size of their winning margin is important in forecasting as

well.

5.2 Conflict forecasting example

We turn here to applying the forecast performance metrics we have discussed and illustrated

earlier to see which forecasting models do a better job predicting intra- and international conflict

data. This example is significantly more complicated and shares more the features of the discus-
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sions in Section 4 since the data are dynamic and multivariate.

The data for our example come from the Event Data Project (EDP) at Penn State which is the

successor to the earlier Kansas Event Data (KEDS) project.53 The case we focus on here are 478,950

machine coded events between China and Taiwan for the period 1 January 1998 to 6 March 2011.54

These are coded using the CAMEO event data coding format (Gerner, Schrodt and Yilmaz 2009)

that classifies the events in a dyadic relationship (Chinese events toward Taiwan, etc.) as well as

into material and verbal conflict / cooperation. The data are first aggregated into monthly time

series for the number of events directed by the China toward Taiwan and Taiwan toward China

according to the following scheme:

• Verbal Cooperation: The occurrence of dialogue-based meetings (i.e. negotiations, peace talks),

statements that express a desire to cooperate or appeal for assistance (other than material

aid) from other actors. CAMEO categories 01 to 05.

• Material Cooperation: Physical acts of collaboration or assistance, including receiving or send-

ing aid, reducing bans and sentencing, etc. CAMEO categories 06 to 09.

• Verbal Conflict: A spoken criticism, threat, or accusation, often related to past or future po-

tential acts of material conflict. CAMEO categories 10 to 14.

• Material Conflict: Physical acts of a conflictual nature, including armed attacks, destruction

of property, assassination, etc. CAMEO categories 15 to 20.

We then subtract the number of material and verbal conflict events from the number of coop-

erative events to construct four time series that summarize the relationships. Under this scaling,

positive values indicate cooperation and negative values indicate conflict. The data series are

China material actions toward Taiwan (C2TM), China verbal actions toward Taiwan (C2TV), Tai-

wan material actions toward China (T2CM), and Taiwan verbal actions toward China (T2CV).

Figure 8 presents the series under analysis for forecasting.

Our forecasting evaluation design for these data incorporates most of the issues we raise above.

First, we are looking at models for a multivariate, dynamic system, and not a single equation

design. Second, our goal is to compare the results of several forecasting models across multiple

metrics: we will use three different forecasting models over two forecasting horizons. Third, the

design is of the ex ante unconditional form: we will set aside a subset of the data for our forecast

performance evaluation. Finally, the forecasts are evaluated using the methods — CRPS, PITs,

VRHs — outlined earlier.

Specifically, data from January 1998 to March 2010 (T = 147) are used to estimate 6 and 12

month ex ante forecasts in the balance of 2010 and into early 2011. Three forecasting models are

53http://eventdata.psu.edu
54By “China” we mean the People’s Republic of China and its other state actors. “Taiwan” is used to refer to The

Republic of China and its affiliated actors.
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Figure 8: Cross-Straits monthly data, 1998-2011

detailed here. The first forecasting model is a Bayesian VAR with an informed prior (see, Brandt

and Freeman 2006). The informed prior centers on a random walk model and is parameterized

with a Sim-Zha prior based on in-sample performance (i.e., data prior to April 2011). The second

forecasting model is a flat or diffuse prior Bayesian VAR. In both of the VAR model, a leg length

of 6 is chosen based on in-sample lag length tests. The third forecasting candidate is a set of

independent, univariate autoregressive models for each data series. In this univariate model,

the lag length for each series forecast is selected automatically by minimizing the AIC for the

in-sample data.

For each of the three forecasting models, an ensemble of 5000 unconditional forecasts were

generated to summarize the forecast density (after a burn-in of 1000 forecasts). These three sets

of 5000 forecasts are the basis for comparing and evaluating the forecast performance in the next

section. The average RMSE, MAE, and CRPS for each equation, forecast method, and forecast
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horizon, relative to the true ex ante realizations of the data, are reported in Table 6. Entries in bold

are those that are considered “optimal” for each criteria. Several of the pitfalls of evaluating and

comparing forecasts that were discussed above become evident in this table.

First, the oft-heard time-series-forecasting mantra that univariate forecasts are superior to mul-

tivariate (system) forecasts is seen in the 6 and 12 period forecast comparisons across the models.

There is evidence that the RMSE and MAE are smaller for some or all of the series in the univariate

versus the BVAR models. As will be shown below, this is because these pooled univariate model

forecasts are overconfident and do not do a good job predicting events in the tail of the forecast

densities. Also, as the forecast horizon doubles, the “optimal” properties of the univariate-based

forecasts deteriorates since the multivariate BVAR models can better capture the important cross-

equation correlations that use this information to better predict the relevant time series.

However, a comparison of the conclusions from the equation-by-equation RMSE and MAE

statistics and the CRPS statistics leads to different conclusions. The CRPSs for the models indicate

that the forecast densities for the two BVAR models are superior for the C2TM and T2CM series

which summarize material conflict in the Straits. This is not the case for the two verbal conflict

zeries, where lower CRPSs are again observed in the univariate model. These failures in forecast-

ing coverage over the different horizons—which are the source of the results in Table 6—are more

evident in a graphical presentation of the forecasts and their error bands. Figure 9 presents the

three forecasts for each model over the two forecast horizons.

What becomes evident here is the same conclusions as Table 6: some of the forecasting models

do better than others for some of the variables. For instance, the two BVAR models have 68%

forecast intervals that cover the true data well for the C2TM and T2CM series, which is why these

have better CRPSs than those seen in the univariate model. The reverse is seen in the C2TV and

T2CV series, where there is evidence that the univariate forecasts have slightly better coverage

of the realized data. The forecast densities show us how and when these forecasting methods

succeed and fail. In the parlance of this paper, they tell us which horses are in the lead and by how

much.

The underlying issues in comparing the forecasting densities across the forecasting models

and horizons are ones of calibration and sharpness. Assessing the calibration and sharpness are

the job of the PIT and the VRH. Recall that the PIT measures how well the density of the forecasts

matches the actual density of the data. This is assessed using equation (17) from the earlier section.

Note however that in the present context, the forecast density is a three-dimensional object: a

multivariate prediction a series of conditional vectors over time. In terms of computing the PIT,

one can then marginalize the PIT density over the variables, time, etc. Since our interest is the

holistic evaluation of the forecasts, we choose the toughest case: the forecast density over the

entire six or twelve period forecast horizon (rather than one-step ahead at a time). This is a very

hard test since as Figure 9 already shows that the forecast density coverages are quite poor for

some of the variables for some of the models.
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Figure 9: Cross-straits forecasts from March 2010 over 6 and 12 month horizons based on an
ensemble of 5000 forecasts for each model. Black lines are the realized data. Cyan forecasts are the
BVAR informed prior results; magenta, BVAR flat prior; brown, univariate autoregressions. Error
bands are 68% or one standard deviation around the mean.
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Figure 10 shows the PIT plots for each model over the 6 and 12 period forecast horizons. These

PIT values show the rather poor performance of the candidate forecasting models over the differ-

ent forecast horizons. Given the results of Table 6 this is to be expected: In each model at least one

of the series is poorly forecast, the forecast density matrix is mis-centered. This is clearly evident

in the PIT plots where we see a serious skew to he left and poor coverage in the middle and higher

parts of the forecast density.

The conclusion then from the earlier forecast density and now the PIT plots is that the BVAR

and univariate forecasts are poorly calibrated. This will also be evident when we look at the

combined calibration and sharpness in the VRH plots. Figure 11 plots the VRH for each model

and forecast horizon over the vector of forecast variables and periods. Here the relevant forecast

ensemble is the 5000 vectorized forecasts for the four variables over the forecast horizon (so the

length is 24 [48] for the 6 [12] period horizon) for each model. This gives us up to 24 ranked

forecasts for the 6 period model and up to 48 ranked forecasts for the 12 period model.

The VRH plot in Figure 11 gives the clearest explanation of the forecast performance over all

of the measures discussed. It shows which forecasts do better with respect to calibration and

sharpness. In the main, there is good evidence from the VRHs that the two BVAR forecasts are

well calibrated: the central tendencies of the VRHs for these models over both forecast horizons

are symmetric and correctly centered. The univariate forecast VRHs show that the forecast den-

sities from these models are off-center, or poorly calibrated (a fact already noted). What is more

important however, is that the univariate forecasts are very underdispersed. They are too con-

centrated and do not generate enough forecasts with low and high ranks compared to either the

BVAR-based models or the theoretical expectation of a uniform VRH. There is no evidence based

on a Komolgorov-Smirnov test that any of the VRHs in Figure 11 are uniform.

In terms of declaring a “winner” in this horserace, the conclusion is as nuanced as a horse

race handicapper would expect. Some horses are projected to run better on grass, others on turf.

Some horses do better in dry conditions and others when it rains. The odds-maker knows this

and can project winners using this information. Carrying this over to conflict forecasting for the

Cross-straits case, similar results are evident. First, using the RMSE or MAE criteria alone does

not properly assess the calibration or the sharpness of the forecasts. Second, the PIT only tells

us part of the story. Unlike in the mixture example, the Cross-Straits data shows that the way

we marginalize the PIT across variables and time does not make it apparent which forecast in

an ensemble is performing poorly. While we know from Figure 9 which models predict which

series better over each horizon, even a seemingly holistic assessment can confound forecast per-

formance. Finally, as the VRH plots illustrate, we can find some evidence that will let us handicap

the winners across forecasting models. The BVAR model performance is definitely superior to that

of the univariate models. This gives us a clear route to improving the forecast performance that

was not present in the comparisons of RMSE and MAE alone.
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Figure 10: Cross-straits forecasts PITs.
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6 Conclusion: Summary and Directions for Future Research

The pure and simple truth is rarely pure and never simple.

Oscar Wilde

In summary, we hope to have established three primary results in this paper. First, the so-

phisticated assessment of forecasts is important on both theoretical and practical grounds. For the

theoretical perspective, accurate forecasting is the defining characteristic of any scientific modeling

exercise. Models that are purely heuristic, explanatory or descriptive may have their place in our

academic discourse, but from the perspective of the philosophy of science, these are pre-scientific
and as such indistinguishable from astrology, alchemy or mythology. Prediction is therefore some-

thing we need to take seriously.

However, because political science involves forecasting the behavior of complex, open sys-

tems, the models we will be evaluating are necessarily stochastic, and we are always making pre-

dictions about distributions, not points. This makes the problem of evaluating a prediction more

difficult than the predictions of deterministic systems—for example trying to predict the locations

of a comet and a spacecraft attempting to rendezvous with it—where simpler point predictions are

adequate. Despite this fact, unfortunately, there has been a tendency in political forecasting to use

methods such as RMSE and MAE which are more primarily useful in evaluating point predictions,

but, as we have demonstrated, can be quite misleading when used to evaluate distributions.

Second, by virtue of the fact that other fields—notably economics and meteorology– also have

dealt with predicting complex, open systems, there exists a rich set of tools for dealing with this

problem. We discussed a wide variety of these, along with some of their advantages and disad-

vantages. As is clear from that discussion, there is no single answer to this issue, and usually a

research will want to explore multiple indicators of forecasting accuracy.

Finally, we illustrate these issues both with idealized simulation results and with a compar-

ison of the results of multiple models that were used to model behavior in the China-Taiwan

“Cross-Straits” case. These examples demonstrate that the various measures can be used not only

to evaluate existing models, but also to provide guidance on how the models might be further

refined, for example by showing the existence of systematic bias and underdispersion in the es-

timates. These methods could be readily applied to other political forecasts, such as those of the

PITF, which are currently evaluated using point-prediction methods.

6.1 Summary of arguments and results

The use of a suite of tools in forecast evaluation

Directions for future research

-Spatial forecasting (see appendix)

-Teaming Horses–Model Pooling. Model ensembles in meteorology; ensemble Bayesian model
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averaging (Raftery, et al. 2005, Berrocal et al 2007)Model averaging in macroeconomics (Geweke

and Amisano 2010) Model averaging in political science (Montgomery and Nylan 2010; Mont-

gomery, et al. 2011)
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Appendix

Evaluation Metrics. Formulae

The notation is as follows: 55

m: forecasting method

rw: random walk model

h: forecast horizon

s: series being forecast

F: a forecast of a variable

A: actual value (realization) of a variable

H: the number of horizons to be forecast

S: number of series being forecast.

So, for example, Fm,h,s using the forecast for method m at horizon h for series s.

The absolute percentage error (APE) is defined as

APEm,h,s = |
Fm,h,s −Ah,s

Ah,s
|. (21)

Using this defintion, we can construct formulae for the mean absolute error, MAPE, and Median

absolute error, MdAPE:

MAPEm,h =

∑S
s=1APEm,h,s

S
x100; (22)

For rank ordered APEm,h,s values, MdAPEm,h = the ranked value S+1
2 if S is odd or the mean

of values S
2 and S

2 + 1 if S is even.

Relative absolute error, RAE, is defined as

RAEm,h,s =
|Fm,h,s −Ah,s|
|Frw,h,s −Ah,s|

(23)

where the benchmark model is the random walk hence the use of Frw,h,s in the denominator.56

The geometric mean of the relative absolute forecast error is expressed as

GMRAEm,h = [ΠS
s=1RAEm,h,s]

1
s (24)

whereas the median relative absolute forecast error is defined like the MdAPE. We first rank

the values of the RAEm,h,s. Then MdRAEm,h = the value S+1
2 if S is odd and the mean of the

values S
2 and S

2 + 1 if S is even.

There are several measures of RAE for the cumulative performance of a model across multiple

55This summary is a condensed version of the appendix in Armstrong and Collopy (1992: 78-79)
56Recall from footnote 22 in the text that the forecast function for the pure random walk is flat at any time t.
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forecast horizons. For example, the simple version of this metric is:

CumRAEm,s =

∑H
h=1 |Fm,h,s −Ah,s|∑H
h=1 |Frw,h,s −Ah,s|

. (25)

The geometric mean cumulative relative absolute error (GMCumRAE) and median cumulative

relative absolute error (MdCumRAE) are defined analogously.

The familiar root mean squared error (RMSE) or root mean squared forecast error (RMSFE) is

defined:

RMSEm,h = [

∑S
s=1(Fm,h,s −Ah,s)

2

S
]
1
2 . (26)

Thiel’s U2 metric for a particular method on a single series is

U2m,h,s =
[ 1
H

∑H
h=1(Fm,h,s −Ah,s)

2]
1
2

[ 1
H

∑H
h=1(Frw,h,s −Ah,s)2]

1
2

(27)

CHECK 1/H.57 Finally there are metrics called percent better (PB) and consensus rank. The

former is defined as

PBm,h =

∑S
s=1 js
S

x100 (29)

where js = 1 if |Fm,h,s − Ah,s| < |Frw,h,s − Ah,s| and 0 otherwise. Consensus rank of a model is

simply the average rank a model receives over a set of metrics.

More on Scoring Rules for Continuous Probability Distributions

Matheson and Winkler (1976: 1089ff) conceive of Probability-Oriented Scoring Rules in the

following way. Say x again is the variable of interest. Consider an analyst (elicitee) who assigns

the probability distribution function F (x) but who reports the distribution function R(x). Let u

divide the real number line into two parts, I1 = (−∞, u] and I2 = (u,∞). The analyst’s payoff

depends on the interval into which x falls (see Figure 12). The binary scoring rule associated with

this idea can be written:

S(R(u)) = S1(R(u))ifx ∈ I1
= S2(R(u))ifx ∈ I2.

57Clements and Hendry (1998:63) use the following version of U2:

U2 =
MSFE

1
2

(H−1ΣA2
T+h)

1
2

(28)

where MSFE is the mean square forecast error, H is the forecast horizon, and A is the actual or observed value of
the variable.

47



Brandt, Freeman & Schrodt Racing Horses

Figure 12: Probability Oriented Scoring Rules. Source: Matheson and Winkler 1967: Figure 1

The expected value of the predictive distribution reported by the analyst is:

E(S(R(u))) = F (u)S1(R(u)) + [1-F(u)]S2(R(u)).

And the key to showing a scoring rule is proper is to demonstrate that the assigned predic-

tive distribution yields an expected value greater or equal to any revealed predictive distribution.

Hence the analyst has no incentive to hedge.

To generalize this framework, Matheson and Winkler that there is a probability distribution,

G(u), for the cut point that defines the two intervals. This produces an expected score once x is

realized of:

S**(R(.))=Eu|x(S(R(u))) =
∫ x

−∞
S2(R(u))dG(u) +

∫ ∞
x
S1(R(u))dG(u).

Before x is realized, the analyst’s expected score is:

E(S∗∗(R(.))) =

∫ ∞
−∞

E(S(R(u)))dG(u).

For instance, the payoff for the continuous quadratic rule can now be rewritten:

S∗∗(R(.)) = −
∫ x

−∞
R2(u)dG(u)−

∫ ∞
x

[1−R(u)]2dG(u).

The expected score for this case is:
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Figure 13: Value-Oriented Scoring Rules. Source: Matheson and Winkler 1976, Figure 2

E(S∗∗(R(.))) = −
∫ ∞
−∞

[F (u)−R(u)]2dG(u)−
∫ ∞
−∞

F (u)[1− F (u)]dG(u).

And, once more, the proper nature of the scoring rule gives the analyst an incentive to set R(u) =

F (u).58

The second type of scoring rules discussed by Matheson and Winkler are based on payoff func-

tions that are defined on the space of values of the variable of interest(the real line). These rules

employ inverse functions like those depicted in Figure 13. For any z ∈ [0, 1] the analyst accrues a

payoff according to the rule T (R−1(z)). A probability distribution function H(z) is chosen for z.

After the value of x is observed, the payoff to the analyst is:

T ∗∗(R−1(.)) = Ez|x(T (R−1(z)) =

∫ 1

0
T (R−1(z))dH(z).

Before this observation the analyst’s expected score is:

E(T ∗∗(R−1(.))) =

∫ ∞
−∞

∫ 1

0
T (R−1)(z))dH(z)dF (x) =

∫ 1

0
E(T (R−1(z)))dH(z).

The shape of dH(z) determines the relative weight put on certain values of the variable. dH(z)

might be U-shaped, for example, if we are most concerned about the extreme tails of the distribu-

tion.
58Matheson show how using G(u) any continuous scoring rule can be discretized. in They derive the RPS in this

way by letting G(u) be discretized with equal weights. And they distinguish the properties of the RPS from those of
the quadratic score in the text.
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Figure 14: Continuous Analogue of the VRH. Source: Gneiting et al 2005

The Continuous Analogue of the VRH

Proponents of probabilistic forecasting sometimes use the continuous analogue of the VRH. In

fact, they sometimes use both forms of the VRH in the same article (Raftery, et al. 2005). This form

emerges from histogram density estimation (Diebold et al 1999: 664). Figure GG is an illustration.

The key difference between the two versions of the VRH are the scales on the vertical axis (cf.

Figure 6 in the text). For the continuous analogue, the area of each triangle represents the relative

frequency of truth appearing the respective rank. If the unit interval is divided into say 10 bins

(ranks), as in Figure 14 above, the width of the bottom parts of these rectangles is always 0.10.

So say that 100 forecasts are made and that the observed values end up in the first rank 10 times.

Then the relative frequency is 10
100 = 0.10. To depict this frequency, the rectangle will have height 1

so the area covered by the first bin is 1× 0.10 = 0.10. Alternatively, say that the forecast ensemble

has too little variability and the observations end up in the first rank 15 times so that that rank one

has relative frequency 0.15. Then the first rectangle in the continuous analogue VRH would have

height 1.5 so that its area is 1.5× 0.10 = 0.15.

Spread error plots such as those shown in Figure 15 are used to assess skill of forecasting

ensembles.They are used in model averaging. It is possible for ensembles to evidence forecasting

skill but still be uncalibrated (see Raftery, et al. 2005: 1155-1156. See also Grimit and Mass 2002).

A Note on Spatial Forecasting

Atmospheric analysis is necessarily three dimensional. the relevant models relate physical

forces like wind speed and temperature at different places and at different levels of the atmo-

sphere. For example, vertical diffusion is a key component of the MM5 model. Meteorological
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Figure 15: Spread-skill relationship for daily absolute error in the 48-h forecast of a) surface tem-
perature and b) sea level pressure in the UW ensemble, Jan.-June 2000. The vertical axis shows
the daily average of absolute errors of the ensemble mean forecast, and the horizontal axis shows
the daily average difference between the highest and lowest forecasts of the ensemble. The solid
line is the least squares regression line. The correlation is .18 for temperature and .42 for sea level
pressure. Source: Raftery et al 2005, Figure 1

forecasters make predictions at grid points representing geographical locations and at at specific

points above sea level. Hence, they use spatial evaluation tools like minimum spanning tree rank

histograms (Hamill 2001: 555; see also Berrocal, et al. 2007: Section 5). We found no parallel

body of work in financial and economic forecasting despite the fact that financial and economic

processes are connected spatially, for instance, financial activity diffuses from one market to an-

other.59

Spatial forecasting in political science is woefully underdeveloped. Election forecasters incor-

porate forces like national economic activity and partisan tides in their predictions of outcomes

in single districts (Bafumi, et al. 2010). But, electoral districts usually are treated as independent

units. International relations forecasting sometimes includes variables for conflict in neighboring

countries but these variables are treated as independent causes of the dependent variable. Illustra-

tive is the PITF’s practice of using armed conflict in four or more bordering states as a predictor for

their conditional models of state failure. We now have spatial events data like those produced by

the SID project at the University of Illinois. We also have a body of theoretical work, agent-based

modeling–that is expressly spatial in character. Future work must strive to use these and other

resources to make spatial forecasts.60

59This is, of course, in part, by design–the portfolio management of international investors.
60Information on the SID event data base can be found at http://www.clinecenter.illinois.edu/research/sid-

project.html.
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