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Abstract

Latent Dirichlet allocation models are a relatively new computational classification al-
gorithm. In its standard application to document classification, the model assumes
each document to be composed of a mixture of multiple, overlapping topics each with
a typical set of words, and classification is done by associating words in a document
with the latent topics most likely to have generated the observed distribution of those
words. I apply this technique to the problem of political forecasting by assuming that
the stream of events observed between a dyad of actors is a mixture of a variety of
different political strategies and standard operating procedures (for example escalation
of repressive measures against a minority group while simultaneously making efforts to
co-opt the elites of that group). By identifying the dominant strategies being pursued
at time t, one gets information that can be used to forecast likely patterns of inter-
action at a later time t + k. This approach is applied to event data generated for 29
Asian countries in the Integrated Conflict Early Warning System project for 1998-2010
to forecast the ICEWS conflict measures for rebellion, insurgency, ethno-religious vi-
olence, domestic political conflict and international conflict at a six month lead time.
In random samples balancing the occurrence of negative and positive outcomes on the
dependent variable, LDA combined with a logistic model predicts with around 60%
to 70% accuracy in in-sample evaluation, and improves very substantially on the sen-
sitivity of the classification compared with simple logistic models in full samples. A
supervised version of LDA, however, does not provide much improvement over the
unsupervised version, and shows some pathological behaviors. Some structure can be
found in the factors, though more work is needed on this.



1 Introduction

Political event data have long been used in the quantitative study of international politics,
dating back to the early efforts of Edward Azar’s COPDAB [Azar, 1980] and Charles Mc-
Clelland’s WEIS [McClelland, 1976] as well as a variety of more specialized efforts such as
Leng’s BCOW [Leng, 1987]. By the late 1980s, the NSF-funded Data Development in Inter-
national Relations project [Merritt et al., 1993] had identified event data as the second most
common form of data—behind the various Correlates of War data sets—used in quantitative
studies (McGowan et al 1988). The 1990s saw the development of two practical automated
event data coding systems, the NSF-funded Keds [Gerner et al., 1994, Schrodt and Gerner,
1994] and the proprietary VRA-Reader (http://vranet.com; [King and Lowe, 2004] and in
the 2000s, the development of two new political event coding ontologies—CAMEO [Gerner
et al., 2009] and IDEA [Bond et al., 2003]—designed for implementation in automated coding
systems.

Much of the work with event data has focused on forecasting political conflict. Within
the early warning literature, three primary methodological approaches exist: time series
[Pevehouse and Goldstein, 1999, Shellman, 2004, 2000, Harff and Gurr, 2001], vector auto
regression (VAR) [Goldstein, 1992, Freeman, 1989], and hidden Markov models (HMM)
[Bond et al., 2004, Shearer, 2006, Schrodt, 2000, 2006]. This paper—like that of the HMM
work—will look at event data as patterns since patterns are one of the most common modes
of political analysis found in qualitative studies. In particular, various forms of qualita-
tive “case-based reasoning”—see for example May [1973], Neustadt and May [1986], Khong
[1992]—essentially match patterns of events from past cases to the events observed in a
current situation (with some substitutions for equivalent events), and then use the best his-
torical fit to predict the likely outcome of the current situation.1 Instead of analyzing the
effects of specific events in a vacuum (like Harff [1998] and her focus on specific “triggers”
and “accelerators”) a pattern-recognition approach allows discrete events or event counts
to determine the likelihood of future events. This general concept can be implemented in
a variety of different ways—see for example the various “artificial intelligence” approaches
in Hudson [1991], Schrodt [1990], Bakeman and Quera [1995], Hudson et al. [2008] and the
HMM studies cited earlier.

In this study, I will using the latent Dirchlet allocation (LDA) algorithm— a recently-
developed classification method usually applied to document classification—to try to dis-
criminate between patterns that do and do not precede various type of conflicts. The event
data are from the recently-developed DARPA-funded Integrated Conflict Early Warning Sys-
tem data set (ICEWS; O’Brien 2010), described in more detail below. This paper is largely
a “proof-of-exercise” exercise to determine whether LDAs are even plausible as an approach
for event data analysis; the initial results do appear promising.

1See [Schrodt, 2004, chapter 6] for a much more extended discussion of this approach
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2 Method

Latent Dirichlet allocation (LDA) models were introduced by Blei et al. [2003] and briefly
described in the abstract of that article as:

LDA is a three-level hierarchical Bayesian model, in which each item of a col-
lection is modeled as a finite mixture over an underlying set of topics. Each
topic is, in turn, modeled as an infinite mixture over an underlying set of topic
probabilities.

In the typical LDA application to document classification, each document is assumed to
be a mixture of multiple, overlapping latent topics, each with a characteristic set of words.
Classification is done by associating words in a document with the topics most likely to have
generated the observed distribution of words in the document. The purpose of LDA is to
determine those latent topics from patterns in the data.

The latent topics are useful for two purposes. First, to the extent that the words associated
with a topic suggest a plausible category, they are intrinsically interesting in determining
the issues found in the set of documents. For example, one of the sample data sets in the
R lda package [Chang, 2010] determines the set of issues discussed in a series of political
blogs. Second, the topics can be used with other classification algorithms such as logistic
regression, support vector machines or discriminant analysis to classify new documents. The
full mathematical details of LDA estimation can be obtained from that paper or the other
usual suspects on the web and will not be repeated here, as I am simply using this off-the-shelf
(or off-the-CRAN, as the case may be.)

Despite the surface differences between the domains, the application of this technique to
the problem of political forecasting is straightforward: It is reasonable to assume that the
stream of events observed between a set of actors is a mixture of a variety political strategies
and standard operating procedures (for example escalation of repressive measures against
a minority group while simultaneously making efforts to co-opt the elites of that group).
This is essentially identical to the process by which a collection of words in a document is
a composite of the various themes and topics, the problem LDA is designed to solve. As
before, the objective of LDA will be to find those latent strategies that are mixed to produce
the observed event stream. These latent factors can then be used to convert full event stream
to a much simpler set of measures.

The importance of latent dimensions in event data—rather than specifying the dimensions
a priori based on some theory—is due to issues of measurement. As I noted in Schrodt
(1994), if one is using event data in forecasting models—the objective of ICEWS—coding
error is only one potential source of error that lies between “events on the ground” and the
predictions of the forecasting model. These include

• News reports are only a tiny, tiny fraction of all of the events that occur daily, and are
non-randomly selected by reporters and editors;
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• Event ontologies such as WEIS, CAMEO and IDEA are very generic and bin together
events that may not always belong together in all contexts;

• Forecasting models always contain specification error and cannot consider everything;
for example few if any political forecasting models contain a full economic forecasting
component;

• Political systems have a degree of intrinsic randomness due to their inherent complexity,
chaotic factors even in the deterministic components of those systems, the impact of
effectively random natural phenomena such as earthquakes and weather, and finally
the effects of free will, so the error intrinsic to a forecasting model will never reduce to
zero.

Because of these sources of error, the ability to determine latent dimension in event data is
important in the overall scientific exercise of improving instrumentation for conflict forecast-
ing. The latent dimensions of event data will never be not self-evident (or purely derivable
from theory) because of the measurement factors noted above. We do not have a “god’s-eye
view” of political interactions—we have the highly (and non-randomly) selected view pro-
vided by the international media. Consequently determining methods that will allow these
to be more effectively used to move the field forward more generally.

The LDA approach is similar in many ways to the hidden Markov approach. In both models,
the observed event stream is produced by a set of events randomly drawn from a mixture
of distributions. In an HMM, however, these distributions are determined by the state of a
Markov chain, whose transition probabilities must be estimated but which consequently also
explicitly provides a formal sequence. An LDA, in contrast, allows any combination of mix-
tures, without explicit sequencing except to the extent—as in this paper—that sequencing
information is provided by the events in the model. The HMMs uses in political forecasting
also tend to have a relatively small (typically about 5) set of states, and hence distributions,
whereas LDA’s typically use a larger number.

The forecasting component will use two different methods. First, a simple logistic regression
will be used with the latent factor (rather than event) counts as the independent variables.
Second, I will test a supervised-learning version of LDA, sLDA [Blei and McAuliffe, 2007].
Rather than determining arbitrary latent factors, which may or may not have any utility in
classification, sLDA starts with the known classifications of cases, and derives factors that
can be used in a logit or regression model to predict those values.

This paper, as an initial evaluation of the method, will use in-sample evaluation rather than
the preferred split-sample approach used to evaluate predictive models. The basic scheme
will be to use two months of data to predict the dependent variable six months later, i.e. a
model of the form

M(lft, lft−1)→ conft+6 (1)

where lft are the latent event factors at time t and conft+6 is a measure of conflict six
months later. The choice of six months is arbitrary—the method would work at any time
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horizon—but is a “policy-relevant lead time” consistent with other forecasting work; that is,
a period of time sufficiently long that there could be a policy response.

I used the R package lda [Chang, 2010] and the routines

library(lda):lda.collapsed.gibbs.sampler

and

library(lda):slda.em

to implement the basic LDA and sLDA respectively. The R logistic estimator

glm(...,family=binomial())

was used for the logistic model, and routines from the ROCR package [Sing et al., 2009] were
used to produce the ROC curves and AUC estimates. Estimation of the simple LDA model
was more or less immediate; the sLDA models took a minute or two to estimate. The
resampling estimation was done using the Penn State Research Computing and Cyberinfras-
tructure high-performance computing facility http://rcc.its.psu.edu/. The event data
counts were initially aggregated using a Stata script into a rectangular data set based on
the dyads and categories discussed below ; this was converted to the sparse-count LDA-C

format used in lda with a custom Python program. This software as well as the LDA/sLDA
estimation scripts are available from the author.

3 Data

The basic data set used in the analysis is the DARPA-funded Integrated Conflict Early
Warning System (ICEWS; O’Brien [2010], Schrodt [2010]) Asian data set, which covers the
period 1997- 2010 and contains over 2,000,000 events for 29 Asian countries. The ICEWS
dataset is produced using a proprietary automated event data coding program, JABARI,
based on the open-source TABARI program but incorporating a number of new features,
particularly pre-processing with open-source natural language processing software, which
increases coding accuracy substantially over TABARI. ICEWS also uses multiple regional
news sources to provide more comprehensive coverage of countries that tend to receive little
media attention from western outlets (Fiji and the Comoros, for example). JABARI uses a
15,000-item actor dictionary to code for a broad range of domestic actors, including but not
limited to military, police, rebel groups, and civilians, and this allows for detailed analyses
of domestic events.

The key difference between the ICEWS event data coding efforts and those of earlier event
data efforts is the scale. As O’Brien—the ICEWS project director—notes,

. . . the ICEWS performers used input data from a variety of sources. Notably,
they collected 6.5 million news stories about countries in the Pacific Command
(PACOM) AOR [area of responsibility] for the period 1998-2006. This resulted
in a dataset about two orders of magnitude greater than any other with which
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we are aware. These stories comprise 253 million lines of text and came from
over 75 international sources (AP, UPI, and BBC Monitor) as well as regional
sources (India Today, Jakarta Post, Pakistan Newswire, and Saigon Times).

3.1 Independent Variables

3.1.1 Actors

Most of the earlier event data analysis has been at the nation-state level, and in those
contexts, the obvious unit of actor aggregation is the state-dyad, e.g. USA− USSR. Once
substate actors are coded, the problem becomes more complex; D’Orazio et al. [2011] discuss
this issue in some detail. While CAMEO scheme currently codes about three dozen distinct
substate actor types, comparable work that has used event data to study substate behavior
generally aggregates these into more general categories: for example in the VRA scheme,
Bond et al. [1997] discuss “mass” and “state” actors; in the GEDS scheme, Harff and Gurr
[2001] discuss “governing elites”, “mass followship”, “disadvantaged groups”, etc; Davies
et al. [1998] address “kindred groups”, “communal groups”, etc; Shellman [2000] discusses
“government” and “dissidents”.

Following earlier work on ICEWS, the actors in this analysis are aggregated into the following
general categories

• gov: government agents such as the executive, police, and military

• par: political parties

• opp: armed opposition—rebels and military groups

• soc: society in general—civilians, businesses, professional groups

• ios: international actors

• usa: United States

3.1.2 Events

The majority of extant event data literature either scales all events, assigning them a score on
a conflict-cooperation continuum or generates event counts reflecting the number of events
that occur within conceptually unique categories. The Goldstein Scale (Goldstein [1992]),
which is the most commonly used scaling technique within the event data literature (see
Goldstein [1992], Schrodt [2007], Schrodt and Gerner [1994], Pevehouse and Goldstein [1999],
Hämmerli et al. [2006], for sample uses) assigns a value to all events coded under the World
Event Interaction Survey (WEIS) scheme on a -10 to 10 scale conflict/cooperation scale,
with -10 reflecting the most conflictual events and 10 indicating the most cooperative is the
most commonly used.
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Despite its dominance within the event data literature, the Goldstein scale requires additional
levels of aggregation beyond the initial scaling, which leads to a number of operational
difficulties. For example, consider a day on which an armed killing (which receives a -10
score) and a peace-treaty signing (which receives a +10 score) occur on the same day between
the same actors. Summing Goldstein scores would result in a net score of 0 in the previous
example, which is the same score that days with no activity receive. While this example
of two events exactly canceling is hypothetical, the problem of violent events masking the
concurrent presence of cooperative actions—notably negotiations occurring during periods
of on-going violence—is very real, and occurs frequently during such periods when the KEDS
Levant and Balkans data are aggregated using Goldstein scores.2 This is further complicated
by the fact that comments and meetings have Goldstein scores that are small in magnitude,
whereas violent events have a scale score of -10. Consequently a small amount of violence
can mask a lot of talking. A similar problem plagued the scaled scores of the COPDAB data
set, where the quip was made that “In COPDAB, three riots equals a thermonuclear war.”

Due to this problem, we have shifted to utilizing count measures [Schrodt et al., 2001, Schrodt
and Gerner, 2004, Shearer, 2006, D’Orazio et al., 2011], with good results. The approach
we have used is similar to earlier Duval and Thompson [1980] event data count model which
places all events into one of the four conceptually unique, mutually exclusive categories,
and these can be readily translated from the WEIS system used in the original article to
CAMEO, which in contrast to WEIS was deliberately structured so that these aggregations
occurs in continguous categories:

• Verbal Cooperation: The occurrence of dialogue-based meetings (i.e. negotiations,
peace talks), statements that express a desire to cooperate or appeal for assistance
(other than material aid) from other actors. CAMEO categories 01 to 05.

• Material Cooperation: Physical acts of collaboration or assistance, including receiving
or sending aid, reducing bans and sentencing, etc. CAMEO categories 06 to 09.

• Verbal Conflict : A spoken criticism, threat, or accusation, often related to past or
future potential acts of material conflict. CAMEO categories 10 to 14.

• Material Conflict : Physical acts of a conflictual nature, including armed attacks, de-
struction of property, assassination, etc. CAMEO categories 15 to 20.

3.1.3 Time

The data have been aggregated at a monthly level: this is in keeping with the monthly coding
of the ICEWS GTDS indicators described below. Since event data are coded to a precision

2Another alternative to the Goldstein scale is the Bond et al. [1997] and Jenkins and Bond [2001] utilize a
different type of event count structure, which places all events into one of eight boxes which reflect whether
an event is violent or non-violent and direct or indirect. The VRA “Conflict Carrying Capacity” approach
differs from the Goldstein scale in its use of a ratio of counts, and more generally the “Cambridge” approach
of VRA and various Harvard-based studies such as King and Lowe [2004] generally employs ratios and average
scaled values rather than the counts and total scaled values used in most of the KEDS project studies.
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of a day, we could use a higher level of resolution: for example studies have been done at the
daily level (Pevehouse and Goldstein [1999], Shearer [2006], Schrodt [2006]), though weekly
(Brandt and Freeman [2005], Shellman and Stewart [2007]), monthly (Schrodt [2007], Ward
et al. [2010]), quarterly (Jenkins and Bond [2001]), and annual level aggregations are present
within the literature. A number of studies find that different temporal aggregations on the
same data can affect empirical results (Alt et al. [2001], Dale [2002], Shellman [2004]), so the
use of a monthly aggregation probably has some effect on the results.

3.2 Dependent Variables

The dependent variables that will be forecast are the political conflict measures the ICEWS
Ground Truth Dataset (GTDS), which provides a monthly, state-level, binary measure of
whether or not each of the five types of political conflict “events-of-interest” (EOI) described
below occur during each state-month.

• Rebellion: Organized opposition where the objective is to seek autonomy or indepen-
dence; [REBELL]

• Insurgency: Organized opposition where the objective is to overthrow the central gov-
ernment; [INSURG]

• Ethnic Religious Violence: Violence between ethnic or religious groups that is not
specifically directed against the government; [ETHREL]

• Domestic Political Crisis: Significant opposition to the government, but not to the level
of rebellion or insurgency (for example, power struggle between two political factions
involving disruptive strikes or violent clashes between supporters); [DOMCRI]

• International Crisis: Conflict between two or more states or elevated tensions between
two or more states that could lead to conflict. [INTCRI]3

The GTDS indicators were originally developed for 1998-2006 using human coding from a
variety of sources; the 2007-2010 indicators have been coded using a combination of event-
data indicators and machine-assisted coding.

4 Results

The LDA estimation was implemented in a set of R scripts. As usual, some initial exper-
imentation was required to get the method to perform reasonably well. Most importantly,
because positive instances of the INSURG, ETHREL and DOMCRI indicators are relatively

3Source for EOI descriptions: O’Brien [2010, p. 90]
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rare in the full data set—only around 5% to 10%—classification algorithms will tend to sim-
ply predict the modal (negative) category. When the full data set was estimated, only the
REBELL and INTCRI indicators had non-trivial predictors; the remaining models simply
predicted the negative for all cases. This was corrected by taking a roughly balanced random
sample of the negative cases.4 This random sample, however, affects the results, so these
will initially be presented as distributions rather than point estimates.

The LDA estimation uses a Gibbs sampler and consequently is a random process itself. I
did not systematically estimate this variation, but in some small-sample experiments the
AUC estimates for INSURG varied by around ±0.01 when the number of iterations in the
estimator was set to either 64 or to the much more time-consuming 128. This is smaller than
the variation induced by the random sampling of the negative cases, but still is an issue.

Table 1 shows the results of multiple random samples for the five EOIs; LDAAcc is the
accuracy—defined below—for the unsupervised LDA with 10 factors followed by classification
using a logistic classification based on those factors. LDAAUC and sLDAAUC are the ROC
“area under curve” measures for the unsupervised and supervised LDA respectively. As Sing
et al. [2009, p. 3] notes, “[AUC] is equal to the value of the Wilcoxon-Mann-Whitney test
statistic and also the probability that the classifier will score a randomly drawn positive
sample higher than a randomly drawn negative sample.” AUC is a widely-used measure of
overall predictive accuracy; an AUC of 0.5 indicates that the model is only performing as
well as chance. Ulfelder [2011] observes that in political forecasting,“An AUC of 0.5 is what
youd expect to get from coin-flipping. A score in the 0.70s is good; a score in the 0.80s is very
good; and a score in the 0.90s is excellent.”5N refers to the number of random samples that
the distribution is based on; this differs due to the tendency of sLDA to crash, particularly
on the INSURG and ETHREL cases.

Three general conclusions can be drawn from Table 1. First, the unsupervised LDA does
better than chance on all of the indicators with a reasonably high positive frequency, usually
about 10% better as measured by accuracy, but almost 20% better for INTCRI. REBELL
and INTCRI also have fairly high average AUC measures, whereas the AUC for the other
three indicators is in line with the accuracy measure. Second, the variation across the random
samples is quite wide, particularly for the three rare positive value indicators, where the range
is around ±0.05. This is considerably higher than the variation due to the Gibbs sampler
estimation procedures. Third, the supervised LDA generally does not perform noticeably
better—or in some instance not at all better—than the unsupervised LDA. The average
AUC is actually lower for the higher-positive-frequency REBELL and INTCRI, dropping
substantially below 0.5 for INTCRI. It is roughly equal for ETHREL, somewhat higher for
INSURG and only for DOMCRI is there a major difference, and even here the ranges of the
estimates overlap.

Figures 1, 2 and 3 show the full distribution of the accuracy measures for REBELL. Figures

4All cases where the indicator was positive were included in each sample. The proportion of negative
cases used were REBELL 30%, INSURG 12.5%, ETHREL 8%, DOMCRI 15%, INTCRI 30%

5http://dartthrowingchimp.wordpress.com/2011/06/09/forecasting-popular-uprisings-in-2011
-how-are-we-doing/. Accessed 10-Jun-2011.
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1 and 2 are roughly normally distributed and a spot-check on some other distributions
confirmed this pattern. Figure 3, on the other hand, is decidedly skewed, more like a chi-
squared distribution, with a few exceptionally high AUCs but most of these barely above
chance.

These results suggest that little is to be gained from the sLDA estimation. This is com-
pounded by the fact is a bug somewhere in the lda:slda.em.mmsb.collapsed.gibbs.sampler

routine that causes R to crash. Both the reported cause of the crash—that is, the resulting
error message—and the timing are unpredictable, so presumably some routine is mucking
about somewhere in memory where it shouldn’t be, and those changes eventually prove
computationally fatal.6 But randomly: in the runs on the HPC machines, some submissions
would crash after a couple of iterations; some would run for the entire four hours I had
allocated. Chang [2010, p. 9] alludes to a potential problem in the routine with “WARN-
ING: This function does not compute precisely...when the count associated with a word in
a document is not 1” and that is definitely the situation here (though it is also the case for
the poliblog data set included with the package) and this problem may be related to that
issue.

LDA Accuracy

D
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si
ty

0.58 0.59 0.60 0.61 0.62 0.63

0
10

20
30

Figure 1: Distribution of LDA Accuracy for REBELL

6Though if someone would like to try to track down this bug, I have an ETHREL subset that reliably
causes a crash.
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Table 1: Distribution of LDA Accuracy and AUC, sLDA AUC

LDA Acc. LDA AUC sLDA AUC

REBELL
Mean 0.604 0.727 0.579
Min. 0.577 0.704 0.510
Max. 0.632 0.753 0.775
StDev 0.010 0.008 0.039
N = 250
INSURG
Mean 0.608 0.649 0.689
Min. 0.521 0.536 0.631
Max. 0.686 0.722 0.751
StDev 0.048 0.032 0.023
N = 125
ETHREL
Mean 0.577 0.620 0.615
Min. 0.493 0.490 0.559
Max. 0.638 0.715 0.707
StDev 0.025 0.043 0.024
N = 125
DOMCRI
Mean 0.621 0.590 0.666
Min. 0.574 0.530 0.592
Max. 0.671 0.636 0.705
StDev 0.018 0.022 0.018
N = 340
INTCRI
Mean 0.678 0.820 0.442
Min. 0.648 0.801 0.374
Max. 0.709 0.837 0.630
StDev 0.011 0.007 0.048
N = 235
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Figure 2: Distribution of LDA AUC for REBELL
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Figure 3: Distribution of sLDA AUC for REBELL
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Tables 3 through 7 and Figures 4 through 13 show detailed classification results for each
EOI. These are based on a single random subsample for each EOI, though they seem fairly
typical. In the presentation of the results, each table is configured as shown in Table 2.

Table 2: EOI Classification Table Scheme

true
pred 0 1
0 TN FN
1 FP TP

The indicators are the usual

Accuracy = TP+TN
TN+FN+FP+TP

Specificity/Recall = TN
TN+FP

Sensitivity = TP
TP+FN

Precision = TP
TP+FP

F1 = 2 · Precision×Recall
Precision+Recall

The “ICEWS Reference Model” is a model that estimates a step-wise logistic using the same
independent variables in the full-sample. This is not terribly useful since the accuracy and
specificity in the full-sample is exaggerated by the low frequency of the positive cases, with a
corresponding hit to sensitivity; I intend to do a balanced-sample estimation of these models
in a future iteration of the paper. Nonetheless, the information is useful in showing that the
LDA improves substantially on the sensitivity, typically by about a factor of at least 2, and
in the case of ETHREL and DOMCRI, more than a factor of 5. How much of this is due to
the method and how much to the balanced sample remains to be determined.

These individual results generally reinforce the analysis in Table 1, though with some ad-
ditional detail. The ROC curves, assuming these are representative, show no particular
pathologies, and in those instances where the AUC is near 0.5, the ROC generally follows
the expected pattern of simply tracing the 45◦ line, though in the case of INTCRI it falls
substantially below this. Consistent with the results in Table 1, in the illustrated case for
DOMCRI, the sLDA ROC is substantially better than the LDA ROC, but for most of the
EOIs it does worse, sometimes quite a bit worse.
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Table 3: Classification Table: REBELL

true
pred 0 1 row N
0 904 592 1496
1 126 283 409
col N 1030 875 1905

Acc 0.623 AUC 0.732
Spec 0.604 Sens 0.691
Prec 0.323 F1 0.421

sLDA AUC 0.527
ICEWS Reference Model

Acc 0.852
Spec 0.996
Sens 0.387
N 4437
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Figure 4: LDA ROC Curve: REBELL
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Figure 5: sLDA ROC Curve: REBELL

Table 4: Classification Table: INSURG

true
pred 0 1 row N
0 375 231 606
1 90 260 350
col N 465 491 956

Acc 0.664 AUC 0.677
Spec 0.619 Sens 0.743
Prec 0.529 F1 0.571

sLDA AUC 0.716
ICEWS Reference Model

Acc 0.915
Spec 0.987
Sens 0.334
N 4437
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Figure 6: LDA ROC Curve: INSURG
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Figure 7: sLDA ROC Curve: INSURG
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Table 5: Classification Table: ETHREL

true
pred 0 1 row N
0 262 222 484
1 51 71 122
col N 313 293 606

Acc 0.550 AUC 0.618
Spec 0.541 Sens 0.582
Prec 0.242 F1 0.335

sLDA AUC 0.556
ICEWS Reference Model

Acc 0.932
Spec 0.996
Sens 0.038
N 4403
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Figure 8: LDA ROC Curve: ETHREL

Figure 9: sLDA ROC Curve: ETHREL
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Table 6: Classification Table: DOMCRI

true
pred 0 1 row N
0 574 345 919
1 17 46 63
col N 591 391 982

Acc 0.631 AUC 0.572
Spec 0.624 Sens 0.730
Prec 0.118 F1 0.198

sLDA AUC 0.670
ICEWS Reference Model

Acc 0.914
Spec 0.993
Sens 0.102
N 4433

Figure 10: LDA ROC Curve: DOMCRI
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Figure 11: sLDA ROC Curve: DOMCRI

Table 7: Classification Table: INTCRI

true
pred 0 1 row N
0 826 470 1296
1 154 414 568
col N 980 884 1864

Acc 0.665 AUC 0.803
Spec 0.637 Sens 0.728
Prec 0.468 F1 0.540

sLDA AUC 0.447
ICEWS Reference Model

Acc 0.820
Spec 0.965
Sens 0.236
N 4437
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Figure 12: LDA ROC Curve: INTCRI

Figure 13: sLDA ROC Curve: INTCRI
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Table 8 shows the most common eight events in each of the ten factors; this list was produced
using the lda:top.words() procedure. The counts are in the form < source > < target >
< event−type > where the components of the variable correspond to the actor aggregation

labels in Section 3.1 and the prefix L1 indicates the t − 1 lag. Note that event counts can
occur in multiple factors and, for example, gov gov vercp—the most common event in the
data—occurs in most (but not all) of the factors in either its current or lagged form.

The illustrated set is not, shall we say, particularly transparent, though there is some clus-
tering: for example F7 contains a disproportionate number of gov ios counts, F6 focuses
on gov opp and F4 is mostly gov gov. Additional analysis of these, particularly across a
number of samples, might reveal further patterns.

I ran a principal components analysis (PCA) on the factor scores across the set of cases for
several combinations of random sample and EOIs, and quite consistently the graph of the
eigenvalues on these components is very flat, albeit usually with a noticeable drop-off for
the last two components. This is quite different than the expected “skree slope” pattern one
typically finds with a PCA, and would normally suggest that there are more factors than the
10 designated here, . This is also somewhat puzzling given that usually dyadic event data
shows a very strong loading on a single conflict-cooperation dimension (hence the widespread
success of the unidimensional Goldstein scale), though this is presumably complicated by the
mixture of substate dyads used in this analysis. That result, in turn, would be consistent with
the assumption that the event stream is a composite of multiple strategies, the assumption for
using LDA in the first place. However, in contrast to application of LDA to text, event data—
both at the event-category level and the dyad-level—are already highly structured, and
consequently the flat PCA loadings may imply that there is not much additional structure
left for the LDA to find.

4.1 Quirks in the analysis

The following notes are information that will otherwise disappear into the laboratory note-
book but may be of interest to anyone trying to replicate/extend this work.

• One of the [many] free parameters is the number of iterations used in the Gibbs sampler
and EM: I experimented with 8, 16, 32, 64 and 128 and the value of 64 appears to
produce stable results as well as being reasonably fast. The LDA estimation is fairly
quick under any choice of iterations; the sLDA takes a very long time when both the
Gibbs and EM iterations are set to 128

• There are a variety of additional free parameters in the routines: these were mostly set
to the defaults or to default-like values, e.g. the vector of initial regression parameters
was set to 1.0.

• Using proportions rather than counts—a common approach when analyzing text corpa—
made no difference in the classification accuracy on the full sample; it could still have
an effect when balanced samples are used.
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Table 8: Top Event Categories by Factor for REBELL

F1 F2 F3 F4 F5
L1gov sta vercf L1gov gov vercp L1gov gov vercp gov gov vercf L1gov gov vercp

gov sta vercf gov gov matcf gov gov vercp gov gov vercp L1gov sta matcp
L1gov gov vercp gov ios vercp gov sta matcp gov gov matcf L1gov soc vercf
L1gov ios vercf L1gov soc vercf L1gov par vercf gov soc vercf L1gov ios vercp

L1gov gov matcf gov sta matcp L1gov gov matcp L1gov soc vercf L1gov gov vercf
L1gov sta matcp L1gov gov matcp L1gov gov matcf L1gov gov matcf gov soc vercf

opp sta matcf L1gov soc matcp L1gov par matcp L1gov gov vercf gov soc matcp

F6 F7 F8 F9 F10
L1gov ios vercp gov gov vercp L1gov sta vercf gov gov vercp gov sta vercf

gov ios vercp L1gov gov vercp gov ios vercp L1gov gov vercp L1gov sta matcp
L1gov opp vercp gov ios matcf gov sta vercf gov sta vercf L1gov sta vercf
L1gov opp matcf gov ios vercp gov par vercf gov sta matcp gov gov vercf
L1gov opp vercf gov ios vercf gov sta matcp gov gov vercf gov ios vercp
gov opp matcf L1gov ios vercf L1gov soc matcp L1gov ios matcp gov gov matcf
opp sta vercp gov gov vercf gov soc vercf gov gov matcp L1gov gov vercf

L1opp sta vercp gov ios matcp L1gov sta matcp L1gov sta matcp L1gov ios vercp

• An experiment with reducing the number of variables by eliminating the dispropor-
tionately high frequency gov gov vercp variable and the very low frequency variables
that involve interactions with the USA produced no discernible improvements.

5 Conclusion

As noted in the introduction, this is an exploratory proof-of-concept for the use of LDA,
rather than the final word on the subject. Based on these preliminary results, is the approach
worth pursing further?

Two features suggest that it may be. First, the accuracy and AUC measures are clearly doing
better than chance, though not dramatically better. In addition, the failure of the sLDA—
which actually does worse than chance in some instances—is in some ways reassuring, as
it demonstrates that the technique will not fit anything. Second, the dramatic increase in
sensitivity compared to the ICEWS reference model is very promising, since sensitivity is a
critical issue on rare-events models, though this will have to be confirmed against balanced-
sample tests of the reference model, and in out-of-sample testing.

There appears to be little evidence to suggest that the sLDA is worth pursuing further, both
with respect to the basic results, the skewed distribution across the random samples, and
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the bug, somewhere, in the code.7

There are several possible extensions to this approach. First, while the 4-category event ag-
gregation system used here has generally produced good results in forecasting work, LDA is
particularly well suited to using completely disaggregated event counts. Document classifica-
tion problems typically involve vocabularies in the thousands or tens-of-thousands of distinct
words, so unlike linear methods, LDA could accommodate a very large set of independent
variables. This would also provide a test of whether anything is gained by disaggregation
into the detailed categories found in existing event data sets, which in turn has implications
for the importance of detailed coding accuracy in automated systems.

Second, logistic regression is not the only available classification algorithm. Support vector
machines are commonly combined with LDA in out-of-sample classification; discriminant
analysis is another available method and there are a variety of others such as neural networks.
My guess is that these will probably produce fairly similar results but some experiments
would be in order.

Third, the “events-only” models are a very hard empircal test compared to conflict prediction
models generally—notably those of ICEWS and PITF—which typically combine structural
information such as GDP/capita, infant mortality rate, democratization and ethnic frac-
tionalization scores with event data, and these indicators are usually necessary to produce
AUC > .80. In addition, the current scheme combines all of the disparate countries of
Asia—from Australia and Japan to Myanmar and Fiji—into a single model, whereas hierar-
chical or random effects models would probably substantially improve the accuracy. In such
approaches, the LDA factors are just one set of information going into the model, rather
than the only set of information.

Fourth, Table 8 shows only one set of raw factors, which may or may not be typical, and
may or may not be representative of the effect of the method for either data reduction or
generating meaningful latent vectors. Two things need to be done to extend this: first, a
composite of factors based on multiple balanced samples, and second, some weighting of the
factors by the coefficients of the logistic model used for classification. In other words, look
at the factors that are actually doing the work of classification, rather than all of the factors.

Finally, the ICEWS data, while extensive, is somewhat idiosyncratic and covers only 14
years. I plan to extend this both to predicting conflict in the 30-year Keds Levant data set—
specifically Israel’s conflicts in Palestine and Lebanon—and to looking at the more difficult
issue of forecasting onset-cessation models within the ICEWS data, following D’Orazio et al.
[2011]

In a history of the first fifteen years of the Keds/Tabari project (Schrodt 2006), the final
section—titled “Mama don’t let your babies grow up to be event data analysts” lamented the
low visibility of event data analysis in the political science literature despite major advances
in automated coding and the acceptance of analyses resulting from that data in every one
of the major refereed political science journals.

7I would also note that Blei and McAuliffe [2007] has relatively few citations compared to Blei et al.
[2003], so sLDA may not be working for much of anything.
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The situation at the present is very different, largely due to ICEWS, which emerged about
six months after I wrote that history. As far as I know, all three of the teams involved in
the first phase of ICEWS used some form of event data in their models, and LM-ATL, the
prime contractor for the only team whose models cleared the out-of-sample benchmarks set
by ICEWS, invested substantial efforts in Tabari. Lockheed and various subcontractors
have continued to invest in additional developments, both for ICEWS and potentially for
other projects, and as noted in the previous section, there are now a number of proprietary
systems in active development, in contrast to the previous fifteen years which saw only
Keds/Tabari and VRA-Reader. Furthermore, with the experimental extension of the
ICEWS event data set to a global level, and the emergence of a number of systems that
will be generating event data in real time based on Web sources, the amount and scope of
available data sets will be changing substantially
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son. Analyzing the dynamics of international mediation processes in the Middle East and
Balkans. Presented at the American Political Science Association meetings, San Francisco,
2001.

Robert Shearer. Forecasting Israeli-Palestinian conflict with hidden Markov models. Avail-
able at http://eventdata.psu.edu/papers.dir/Shearer.IP.pdf, 2006.

Stephen Shellman. Process matters: Conflict and cooperation in sequential government-
dissident interactions. Journal of Conflict Resolution, 15(4):563–599, 2000.

Stephen Shellman. Time series intervals and statistical inference: The effects of temporal
aggregation on event data analysis. Security Studies, 12(1):97–104, 2004.

Stephen Shellman and Brandon Stewart. Predicting risk factors associated with forced
migration: An early warning model of Haitian flight. Civil Wars, 9(2):174–199, 2007.

Tobias Sing, Oliver Sander, Niko Beerenwinkel, and Thomas Lengauer. Pack-
age ROCR: Visualizing the performance of scoring classifiers. Available at
http://cran.r-project.org/web/packages/ROCR/; Version dated 08-Dec-2009, 2009.

Michael D. Ward, Brian D. Greenhill, and Kristin M. Bakke. The perils of policy by p-value:
Predicting civil conflicts. Journal of Peace Research, 47(5), 2010.

28


